
File System Tuning Guide

StorNext 4.7.x

6-67951-01 Rev B
6-67951-01

ii StorNext File System Tuning Guide

Quantum StorNext 4.7.x File System Tuning Guide, 6-67951-01 Rev B, August 2013, Product of USA.

Quantum Corporation provides this publication “as is” without warranty of any kind, either express or
implied, including but not limited to the implied warranties of merchantability or fitness for a particular
purpose. Quantum Corporation may revise this publication from time to time without notice.

COPYRIGHT STATEMENT

© 2013 Quantum Corporation. All rights reserved.

Your right to copy this manual is limited by copyright law. Making copies or adaptations without prior
written authorization of Quantum Corporation is prohibited by law and constitutes a punishable
violation of the law.

TRADEMARK STATEMENT

Quantum, the Quantum Logo, Backup. Recovery. Archive. It's What We Do., Be Certain, Be Quantum
Certain, DLT, the DLT Logo, DLTSage, DLTtape, the DLTtape Logo, DXi, DXi Accent, Dynamic Powerdown,
FastSense, FlexLink, GoProtect, GoVault, iLayer, Lattus, MediaShield, Optyon, Pocket-sized., Well-
armored., Preserving the World's Most Important Data. Yours., Q-Cloud, Quantum Certain, Quantum
Certainty, Quantum vmPRO, Scalar, SDLT, SiteCare, SmartVerify, StorageCare, StorNext, Super DLTtape,
SuperLoader, and Vision are either registered trademarks or trademarks of Quantum Corporation and its
affiliates in the United States and/or other countries. All other trademarks are the property of their
respective owners.

Products mentioned herein are for identification purposes only and may be registered trademarks or
trademarks of their respective companies. All other brand names or trademarks are the property of their
respective owners.

Quantum specifications are subject to change.

Contents

Chapter 1 StorNext File System Tuning 1

The Underlying Storage System. 2
RAID Cache Configuration . 2
RAID Write-Back Caching . 2
Kinds of Stripe Groups . 4
RAID Level . 4
Segment Size and Stripe Size . 5
The deviceparams File . 6

File Size Mix and Application I/O Characteristics 7
Direct Memory Access (DMA) I/O Transfer 7
Buffer Cache . 8
NFS / CIFS . 8
The NFS subtree_check Option . 9

Reverse Path Lookup (RPL). 9

SNFS and Virus Checking. 10

The Metadata Network . 10

The Metadata Controller System . 11
FSM Configuration File Settings . 11
SNFS Tools . 22
Mount Command Options . 26
SNFS External API . 27

Optimistic Allocation . 27
StorNext File System Tuning Guide iii

Contents
How Optimistic Allocation Works . 28
Optimistic Allocation Formula. 29

Special Considerations for StorNext LAN Clients 31
Hardware Configuration . 31
Software Tuning and Configuration . 32
Network Configuration and Topology. 43

StorNext Gateway servers . 44

StorNext LAN Client vs. Legacy Network Attached Storage 45
Performance . 45
Fault Tolerance . 45
Load Balancing . 46
Consistent Security Model . 46

Windows Memory Requirements. 46

Windows Performance Monitor Counters . 48

Cpuspeed Service Issue on Linux . 49

How to Set max_cstate in Linux. 49

Example FSM Configuration File . 50
Linux Example Configuration File . 50
Windows Example Configuration File 54

Ports Used By StorNext . 60

Chapter 2 Allocation Session Reservation (ASR) 61

How ASR Works. 63
Allocation Sessions . 63
Video Frame Per File Formats . 64
Hotspots and Locality . 65
Small Session Rationale. 66
Large File Sessions and Medium Session Reservation 66

Appendix A StorNext File System Stripe Group Affinity 71

Definitions. 71
Stripe Group . 71
Affinity . 71
Exclusivity . 72
iv StorNext File System Tuning Guide

Contents
Setting Affinities . 72

Allocation Strategy . 72

Common Use Cases . 73
Using Affinities on the HaShared File 74
Segregating Audio and Video Files Onto Their Own Stripe Groups
76
Reserving High-Speed Disk For Critical Files 76

Appendix B Best Practice Recommendations 79

HA File System Best Practices. 79

Replication Best Practices . 80
Replication Copies. 80
Replication and Deduplication . 81
StorNext Gateway Server Performance 82
Replication with Multiple Physical Network Interfaces 82

Deduplication Best Practices . 82
Deduplication and File Size . 82
Deduplication and Backups. 83
Deduplication and File Inactivity . 83
Deduplication and System Resources 83
Deduplication Parallel Streams . 83

Truncation Best Practices. 84
Deduplication and Truncation. 84
StorNext File System Tuning Guide v

Contents
vi StorNext File System Tuning Guide

Chapter 1
StorNext File System Tuning

The StorNext File System (SNFS) provides extremely high performance
for widely varying scenarios. Many factors determine the level of
performance you will realize. In particular, the performance
characteristics of the underlying storage system are the most critical
factors. However, other components such as the Metadata Network and
MDC systems also have a significant effect on performance.

Furthermore, file size mix and application I/O characteristics may also
present specific performance requirements, so SNFS provides a wide
variety of tunable settings to achieve optimal performance. It is usually
best to use the default SNFS settings, because these are designed to
provide optimal performance under most scenarios. However, this guide
discusses circumstances in which special settings may offer a
performance benefit.

Note: The configuration file examples in this guide show both the
.cfgx (XML) format used by StorNext for Linux and the .cfg
format used by Windows.

For information about locating sample configuration files, see
Example FSM Configuration File on page 50.
StorNext File System Tuning Guide 1

Chapter 1: StorNext File System Tuning
The Underlying Storage System
The Underlying Storage System

The performance characteristics of the underlying storage system are
the most critical factors for file system performance. Typically, RAID
storage systems provide many tuning options for cache settings, RAID
level, segment size, stripe size, and so on.

RAID Cache
Configuration

The single most important RAID tuning component is the cache
configuration. This is particularly true for small I/O operations.
Contemporary RAID systems provide excellent small I/O performance
with properly tuned caching. So, for the best general purpose
performance characteristics, it is crucial to utilize the RAID system
caching as fully as possible.

For example, write-back caching is absolutely essential for metadata
stripe groups to achieve high metadata operations throughput.

However, there are a few drawbacks to consider as well. For example,
read-ahead caching improves sequential read performance but might
reduce random performance. Write-back caching is critical for small
write performance but may limit peak large I/O throughput.

Caution: Some RAID systems cannot safely support write-back
caching without risk of data loss, which is not suitable for
critical data such as file system metadata.

Consequently, this is an area that requires an understanding of
application I/O requirements. As a general rule, RAID system caching is
critically important for most applications, so it is the first place to focus
tuning attention.

RAID Write-Back
Caching

Write-back caching dramatically reduces latency in small write
operations. This is accomplished by returning a successful reply as soon
as data is written into RAID cache, thus allowing the RAID to
immediately acknowledge completion of the write I/O operation as soon
as the data has been captured into the RAID's cache. Simultaneous to
write into cache operations, the RAID writes previously cached data
2 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
The Underlying Storage System
onto the targeted disk LUN storage. The result is minimal I/O latency and
thus great performance improvement for small write I/O operations.

Many contemporary RAID systems protect against write-back cache data
loss due to power or component failure. This is accomplished through
various techniques including redundancy, battery backup, battery-
backed memory, and controller mirroring. To prevent data corruption, it
is important to ensure that these systems are working properly. It is
particularly catastrophic if file system metadata is corrupted, because
complete file system loss could result.

Caution: If the array uses write-back caching, Quantum requires that
the cache is battery-backed.

Minimal I/O latency is critically important to file system performance
whenever the file system processes a large number of files of smaller file
sizes. Each file processed requires a metadata small write operation and
as discussed above many small write operations I/O latency is improved
with RAID write-Back caching enabled. This is easily observed in the
hourly File System Manager (FSM) statistics reports in qustats log files:
the “PIO Write HiPri” statistic reports average, minimum, and maximum
write latency (in microseconds) for the reporting period. If the observed
average latency exceeds 0.5 milliseconds, peak metadata operation
throughput will be degraded. For example, create operations may be
around 2000 per second when metadata disk latency is below 0.5
milliseconds. However, create operations may fall to less than 200 per
second when metadata disk latency is around 5 milliseconds.

In contrast to Write-Back caching, Write-Through caching eliminates use
of the cache for writes. This approach involves synchronous writes to
the physical disk before returning a successful reply for the I/O
operation. The write-through approach exhibits much worse latency
than write-back caching; therefore, small I/O performance (such as
metadata operations) is severely impacted. It is important to determine
which write caching approach is employed, because the performance
observed will differ greatly for small write I/O operations.

In most cases, enabling Write-Back RAID caching improves file system
performance regardless of whether small or large file sizes are being
processed. However, in rare instances for some customers, depending
on the type of data and RAID equipment and when larger file sizes are
being processed, disabling RAID caching maximizes SNFS file system
performance.
StorNext File System Tuning Guide 3

Chapter 1: StorNext File System Tuning
The Underlying Storage System
Most dual controller disk arrays typically use a "write cache mirroring"
mechanism to protect against a controller failure. While "write cache
mirroring" may add a small amount of redundancy, it can have a big
impact on performance for large writes where controller bandwidth
utilization is important. The performance penalty for streaming writes
may be as high as 50% when cache mirroring is turned On. Depending
on the customer's performance and reliability needs, you may consider
turning "write cache mirroring" Off in the array controllers cache
settings.

Kinds of Stripe Groups StorNext uses Stripe Groups to separate data with different
characteristics onto different LUNs. Every StorNext file system has three
kinds of Stripe Groups.

• Metadata Stripe Groups hold the file system metadata: the file
name and attributes for every file in the file system. Metadata is
typically very small and accessed in a random pattern.

• Journal Stripe Groups hold the StorNext Journal: the sequential
changes to the file system metadata. Journal data is typically a series
of small sequential writes and reads.

• User Data Stripe Groups hold the content of files. User data access
patterns depend heavily on the customer workflow, but typical
StorNext use is of large files sequentially read and written. Users can
define multiple User Data Stripe Groups with different
characteristics and assign data to those Stripe Groups with
Affinities; see Appendix A, StorNext File System Stripe Group
Affinity.

Because the typical access patterns for Metadata and User Data are
different, Quantum recommends creating different Stripe Groups for
Metadata and User Data. Journal data access patterns are similar
enough to be placed on the Metadata Stripe Group, or Journal can be
placed on its own Stripe Group.

RAID Level Configuration settings such as RAID level, segment size, and stripe size
are very important and cannot be changed after put into production, so
it is critical to determine appropriate settings during initial
configuration.
4 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
The Underlying Storage System
Quantum recommends Metadata and Journal Strips Groups use RAID 1
because it is most optimal for very small I/O sizes. Quantum
recommends using fibre channel or SAS disks (as opposed to SATA) for
metadata and journal due to the higher IOPS performance and
reliability. It is also very important to allocate entire physical disks for
the Metadata and Journal LUNs in order to avoid bandwidth contention
with other I/O traffic. Metadata and Journal storage requires very high
IOPS rates (low latency) for optimal performance, so contention can
severely impact IOPS (and latency) and thus overall performance. If
Journal I/O exceeds 1ms average latency, you will observe significant
performance degradation.

Note: For Metadata, RAID 1 works well, but RAID 10 (a stripe of
mirrors) offers advantages. If IOPS is the primary need of the
file system, RAID 10 supports additional performance by
adding additional mirror pairs to the stripe. (The minimum is 4
disks, but 6 or 8 are possible). While RAID 1 has the
performance of one drive (or slightly better than one drive),
RAID 10 offers the performance of RAID 0 and the security of
RAID 1. This suits the small and highly random nature of
metadata.

Quantum recommends User Data Stripe Groups use RAID 5 for high
throughput, with resilience in case of disk error. A 4+1 RAID 5 group
would logically process data on four disks, and another disk for parity.

Some storage vendors now provide RAID 6 capability for improved
reliability over RAID 5. This may be particularly valuable for SATA disks
where bit error rates can lead to disk problems. However, RAID 6
typically incurs a performance penalty compared to RAID 5, particularly
for writes. Check with your storage vendor for RAID 5 versus RAID 6
recommendations.

Segment Size and
Stripe Size

The stripe size is the sum of the segment sizes of the data disks in the
RAID group. For example, a 4+1 RAID 5 group (four data disks plus one
parity) with 64kB segment sizes creates a stripe group with a 256kB
stripe size. The stripe size is a critical factor for write performance.
Writes smaller than the stripe size incur the read/modify/write penalty,
described more fully below. Quantum recommends a stripe size of
512kB or smaller.
StorNext File System Tuning Guide 5

Chapter 1: StorNext File System Tuning
The Underlying Storage System
The RAID stripe size configuration should typically match the SNFS
StripeBreadth configuration setting when multiple LUNs are utilized
in a stripe group. However, in some cases it might be optimal to
configure the SNFS StripeBreadth as a multiple of the RAID stripe
size, such as when the RAID stripe size is small but the user's I/O sizes are
very large. However, this will be suboptimal for small I/O performance,
so may not be suitable for general purpose usage.

To help the reader visualize the read/modify/write penalty, it may be
helpful to understand that the RAID can only actually write data onto
the disks in a full stripe sized packet of data. Write operations to the
RAID that are not an exact fit of one or more stripe-sized segments,
requires that the last, or only, stripe segment be read first from the
disks. Then the last, or only portion, of the write data is overlaid onto
the read stripe segment. Finally, the data is written back out onto the
RAID disks in a single full stripe segment. When RAID caching has been
disabled (no Write-Back caching), these read/modify/write operations
will require a read of the stripe data segment into host memory before
the data can be properly merged and written back out. This is the worst
case scenario from a performance standpoint. The read/modify/write
penalty is most noticeable in the absence of “write-back” caching being
performed by the RAID controller.

It can be useful to use a tool such as lmdd to help determine the
storage system performance characteristics and choose optimal
settings. For example, varying the stripe size and running lmdd with a
range of I/O sizes might be useful to determine an optimal stripe size
multiple to configure the SNFS StripeBreadth.

The deviceparams File This file is used to control the I/O scheduler, and control the scheduler's
queue depth.

For more information about this file, see the deviceparams man page,
or the StorNext Man Pages Reference Guide posted here (click the
“Select a StorNext Version” menu to view the desired documents):

http://www.quantum.com/sndocs

The I/O throughput of Linux Kernel 2.6.10 (SLES10 and later and RHEL5
and later) can be increased by adjusting the default I/O settings.
Beginning with the 2.6 kernel, the Linux I/O scheduler can be changed
to control how the kernel does reads and writes. There are four types of
I/O scheduler available in Linux kernel 2.6.10 and higher:
6 StorNext File System Tuning Guide

http://www.quantum.com/sndocs

Chapter 1: StorNext File System Tuning
File Size Mix and Application I/O Characteristics
• The completely fair queuing scheduler

• The no operation scheduler

• The deadline scheduler

• The anticipatory scheduler

The default scheduler in most distributions is the completely fair
queuing (cfq). Experimentation shows that the deadline scheduler
provides the the best improvement.

File Size Mix and Application I/O Characteristics

It is always valuable to understand the file size mix of the target dataset
as well as the application I/O characteristics. This includes the number of
concurrent streams, proportion of read versus write streams, I/O size,
sequential versus random, Network File System (NFS) or Common
Internet File System (CIFS) access, and so on.

For example, if the dataset is dominated by small or large files, various
settings can be optimized for the target size range.

Similarly, it might be beneficial to optimize for particular application I/O
characteristics. For example, to optimize for sequential 1MB I/O size it
would be beneficial to configure a stripe group with four 4+1 RAID 5
LUNs with 256K stripe size.

However, optimizing for random I/O performance can incur a
performance trade-off with sequential I/O.

Furthermore, NFS and CIFS access have special requirements to consider
as described in the Direct Memory Access (DMA) I/O Transfer section.

Direct Memory Access
(DMA) I/O Transfer

To achieve the highest possible large sequential I/O transfer throughput,
SNFS provides DMA-based I/O. To utilize DMA I/O, the application must
issue its reads and writes of sufficient size and alignment. This is called
well-formed I/O. See the mount command settings
auto_dma_read_length and auto_dma_write_length, described in
the Mount Command Options on page 26.
StorNext File System Tuning Guide 7

Chapter 1: StorNext File System Tuning
File Size Mix and Application I/O Characteristics
Buffer Cache Reads and writes that aren't well-formed utilize the SNFS buffer cache.
This also includes NFS or CIFS-based traffic because the NFS and CIFS
daemons defeat well-formed I/Os issued by the application.

There are several configuration parameters that affect buffer cache
performance. The most critical is the RAID cache configuration because
buffered I/O is usually smaller than the RAID stripe size, and therefore
incurs a read/modify/write penalty. It might also be possible to match
the RAID stripe size to the buffer cache I/O size. However, it is typically
most important to optimize the RAID cache configuration settings
described earlier in this document.

It is usually best to configure the RAID stripe size no greater than 256K
for optimal small file buffer cache performance.

For more buffer cache configuration settings, see Mount Command
Options on page 26.

NFS / CIFS It is best to isolate NFS and/or CIFS traffic off of the metadata network
to eliminate contention that will impact performance. On NFS clients,
use the vers=4, rsize=262144 and wsize=262144 mount options,
and use TCP mounts instead of UDP. When possible, it is also best to
utilize TCP Offload capabilities as well as jumbo frames.

It is best practice to have clients directly attached to the same network
switch as the NFS or CIFS server. Any routing required for NFS or CIFS
traffic incurs additional latency that impacts performance.

It is critical to make sure the speed/duplex settings are correct, because
this severely impacts performance. Most of the time auto-detect is the
correct setting for the ethernet interface used for the NFS or CIFS traffic.

Whether auto-detect is the correct setting depends on the ethernet
switch capabilities that the ethernet interface connects to. Some
managed switches can not negotiate the auto-detect capability with a
host ethernet interface and instead allow setting speed/duplex (for
example 1000Mb/full,) which disables auto-detect and requires the
host to be set exactly the same. However, if the settings do not match
between switch and host, it severely impacts performance. For example,
if the switch is set to auto-detect but the host is set to 1000Mb/full,
you will observe a high error rate along with extremely poor
performance. On Linux, the ethtool tool can be very useful to
investigate and adjust speed/duplex settings.
8 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
Reverse Path Lookup (RPL)
If performance requirements cannot be achieved with NFS or CIFS,
consider using a StorNext LAN client or fibre-channel attached client.

It can be useful to use a tool such as netperf to help verify network
performance characteristics.

The NFS subtree_check
Option

Although supported in previous StorNext releases, the subtree_check
option (which controls NFS checks on a file handle being within an
exported subdirectory of a file system) is no longer supported as of
StorNext 4.0.

Reverse Path Lookup (RPL)

Beginning with release 4.0, StorNext includes a new feature called
Reverse Path Lookup (RPL). When enabled, RPL provides the following
benefits:

• StorNext replication reports containing lists of files show full
pathnames instead of inode numbers.

• Operations involving reverse path lookup on managed file systems
containing directories with very large file counts (>50,000) perform
significantly better.

RPL is automatically enabled for file systems created using StorNext 4.0
and later. File systems created with StorNext releases prior to 4.0 do not
have RPL enabled.

RPL can be turned on for these file systems by running the command
cvupdatefs –L. However, there are possible side effects to dynamically
enabling RPL, including the following:

• Extensive downtime to populate existing inodes with RPL
information

• Increased metadata space usage (running cvupdatefs –L may
result in as much as double the amount used)

• Decreased performance for certain inode-related operations

Therefore, consider carefully when deciding whether to enable RPL for
file systems created with StorNext releases prior to 4.0.
StorNext File System Tuning Guide 9

Chapter 1: StorNext File System Tuning
SNFS and Virus Checking
SNFS and Virus Checking

Virus-checking software can severely degrade the performance of any
file system, including SNFS. If you have anti-virus software running on a
Windows Server 2003 or Windows XP machine, Quantum recommends
configuring the software so that it does NOT check SNFS.

For optimal performance, Quantum recommends turning off virus
checking on the SNFS file system.

The Metadata Network

As with any client/server protocol, SNFS performance is subject to the
limitations of the underlying network. Therefore, it is recommended
that you use a dedicated Metadata Network to avoid contention with
other network traffic. Neither TCP offload nor are jumbo frames
required.

It is best practice to have all SNFS clients directly attached to the same
network switch as the MDC systems. Any routing required for metadata
traffic will incur additional latency that impacts performance.

It can be useful to use a tool like netperf to help verify the Metadata
Network performance characteristics. For example, if netperf -t TCP_RR
-H <host> reports less than 4,000 transactions per second capacity, a
performance penalty may be incurred. You can also use the netstat tool
to identify tcp retransmissions impacting performance. The cvadmin
“latency-test” tool is also useful for measuring network latency.

Note the following configuration requirements for the metadata
network:

• In cases where gigabit networking hardware is used and maximum
StorNext performance is required, a separate, dedicated switched
Ethernet LAN is recommended for the StorNext metadata network.
If maximum StorNext performance is not required, shared gigabit
networking is acceptable.
10 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
The Metadata Controller System
The Metadata Controller System

The CPU power and memory capacity of the MDC System are important
performance factors, as well as the number of file systems hosted per
system. In order to ensure fast response time it is necessary to use
dedicated systems, limit the number of file systems hosted per system
(maximum 8), and have an adequate CPU and memory. As of StorNext
4.3.0, the database will handle up to 1 Billion files per MDC, and 1
Billion files per file system.

Some metadata operations such as file creation can be CPU intensive,
and benefit from increased CPU power.

Other operations can benefit greatly from increased memory, such as
directory traversal. SNFS provides three config file settings that can be
used to realize performance gains from increased memory:
BufferCacheSize, InodeCacheSize, and ThreadPoolSize.

However, it is critical that the MDC system have enough physical
memory available to ensure that the FSM process doesn’t get swapped
out. Otherwise, severe performance degradation and system instability
can result.

The operating system on the metadata controller must always be run in
U.S. English.

FSM Configuration File
Settings

The following FSM configuration file settings are explained in greater
detail in the snsf.cfgx file and snfs_config man pages, which are
available in the Man Pages Reference Guide posted here (click the
“Select a StorNext Version” menu to view the desired documents):

http://www.quantum.com/sndocs

Please refer there for setting details and an example file. For a sample
FSM configuration file, see Example FSM Configuration File on page 50.

Stripe Groups

Splitting apart data, metadata, and journal into separate stripe groups
is usually the most important performance tactic. The create, remove,
and allocate (e.g., write) operations are very sensitive to I/O latency of
the journal stripe group. However, if create, remove, and allocate
StorNext File System Tuning Guide 11

http://www.quantum.com/sndocs

Chapter 1: StorNext File System Tuning
The Metadata Controller System
performance aren't critical, it is okay to share a stripe group for both
metadata and journal, but be sure to set the exclusive property on the
stripe group so it doesn't get allocated for data as well.

Note: It is recommended that you have only a single metadata stripe
group. For increased performance, use multiple LUNs (2 or 4)
for the stripe group.

RAID 1 mirroring is optimal for metadata and journal storage. Utilizing
the write-back caching feature of the RAID system (as described
previously) is critical to optimizing performance of the journal and
metadata stripe groups. Quantum recommends mapping no more than
one LUN per RAID 1 set.

Example (Linux)

<stripeGroup index="0" name="MetaFiles" status="up"
stripeBreadth="262144" read="true" write="true"
metadata="true" journal="false" userdata="false"
realTimeIOs="200" realTimeIOsReserve="1"
realTimeMB="200" realTimeMBReserve="1"
realTimeTokenTimeout="0" multipathMethod="rotate">

<disk index="0" diskLabel="CvfsDisk0"
diskType="MetaDrive"/>

</stripeGroup>
<stripeGroup index="1" name="JournFiles" status="up"
stripeBreadth="262144" read="true" write="true"
metadata="false" journal="true" userdata="false"
realTimeIOs="0" realTimeIOsReserve="0" realTimeMB="0"
realTimeMBReserve="0" realTimeTokenTimeout="0"
multipathMethod="rotate">

<disk index="0" diskLabel="CvfsDisk1"
diskType="JournalDrive"/>

</stripeGroup>
<stripeGroup index="4" name="RegularFiles" status="up"
stripeBreadth="262144" read="true" write="true"
metadata="false" journal="false" userdata="true"
realTimeIOs="0" realTimeIOsReserve="0" realTimeMB="0"
realTimeMBReserve="0" realTimeTokenTimeout="0"
multipathMethod="rotate">

<disk index="0" diskLabel="CvfsDisk14"
diskType="DataDrive"/>
12 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
The Metadata Controller System
<disk index="1" diskLabel="CvfsDisk15"
diskType="DataDrive"/>
<disk index="2" diskLabel="CvfsDisk16"
diskType="DataDrive"/>
<disk index="3" diskLabel="CvfsDisk17"
diskType="DataDrive"/>

</stripeGroup>

Example (Windows)

[StripeGroup MetaFiles]
Status Up
StripeBreadth 256K
Metadata Yes
Journal No
Exclusive Yes
Read Enabled
Write Enabled
Rtmb 200
Rtios 200
RtmbReserve 1
RtiosReserve 1
RtTokenTimeout 0
MultiPathMethod Rotate
Node CvfsDisk0 0

[StripeGroup JournFiles]
Status Up
StripeBreadth 256K
Metadata No
Journal Yes
Exclusive Yes
Read Enabled
Write Enabled
Rtmb 0
Rtios 0
RtmbReserve 0
RtiosReserve 0
RtTokenTimeout 0
StorNext File System Tuning Guide 13

Chapter 1: StorNext File System Tuning
The Metadata Controller System
MultiPathMethod Rotate
Node CvfsDisk1 0

[StripeGroup RegularFiles]
Status Up
StripeBreadth 256K
Metadata No
Journal No
Exclusive No
Read Enabled
Write Enabled
Rtmb 0
Rtios 0
RtmbReserve 0
RtiosReserve 0
RtTokenTimeout 0
MultiPathMethod Rotate
Node CvfsDisk14 0
Node CvfsDisk15 1
Node CvfsDisk16 2
Node CvfsDisk17 3

Affinities

Affinities are another stripe group feature that can be very beneficial.
Affinities can direct file allocation to appropriate stripe groups
according to performance requirements. For example, stripe groups can
be set up with unique hardware characteristics such as fast disk versus
slow disk, or wide stripe versus narrow stripe. Affinities can then be
employed to steer files to the appropriate stripe group.

For optimal performance, files that are accessed using large DMA-based
I/O could be steered to wide-stripe stripe groups. Less performance-
critical files could be steered to slow disk stripe groups. Small files could
be steered clear of large files, or to narrow-stripe stripe groups.

Example (Linux)

<stripeGroup index="3" name="AudioFiles" status="up"
stripeBreadth="1048576" read="true" write="true"
metadata="false" journal="false" userdata="true"
14 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
The Metadata Controller System
realTimeIOs="0" realTimeIOsReserve="0" realTimeMB="0"
realTimeMBReserve="0" realTimeTokenTimeout="0"
multipathMethod="rotate">

<affinities exclusive="true">
<affinity>Audio</affinity>

</affinities>
<disk index="0" diskLabel="CvfsDisk10"
diskType="AudioDrive"/>
<disk index="1" diskLabel="CvfsDisk11"
diskType="AudioDrive"/>
<disk index="2" diskLabel="CvfsDisk12"
diskType="AudioDrive"/>
<disk index="3" diskLabel="CvfsDisk13"
diskType="AudioDrive"/>

</stripeGroup>

Example (Windows)

[StripeGroup AudioFiles]
Status Up
StripeBreadth 1M
Metadata No
Journal No
Exclusive Yes
Read Enabled
Write Enabled
Rtmb 0
Rtios 0
RtmbReserve 0
RtiosReserve 0
RtTokenTimeout 0
MultiPathMethod Rotate
Node CvfsDisk10 0
Node CvfsDisk11 1
Node CvfsDisk12 2
Node CvfsDisk13 3
Affinity Audio

Note: Affinity names cannot be longer than eight characters.
StorNext File System Tuning Guide 15

Chapter 1: StorNext File System Tuning
The Metadata Controller System
StripeBreadth

This setting should match the RAID stripe size or be a multiple of the
RAID stripe size. Matching the RAID stripe size is usually the most
optimal setting. However, depending on the RAID performance
characteristics and application I/O size, it might be beneficial to use a
multiple or integer fraction of the RAID stripe size. For example, if the
RAID stripe size is 256K, the stripe group contains 4 LUNs, and the
application to be optimized uses DMA I/O with 8MB block size, a
StripeBreadth setting of 2MB might be optimal. In this example the
8MB application I/O is issued as 4 concurrent 2MB I/Os to the RAID. This
concurrency can provide up to a 4X performance increase. This
StripeBreadth typically requires some experimentation to determine the
RAID characteristics. The lmdd utility can be very helpful. Note that this
setting is not adjustable after initial file system creation.

Optimal range for the StripeBreadth setting is 128K to multiple
megabytes, but this varies widely.

Note: This setting cannot be changed after being put into
production, so its important to choose the setting carefully
during initial configuration.

Example (Linux)

<stripeGroup index="2" name="VideoFiles" status="up"
stripeBreadth="4194304" read="true" write="true"
metadata="false" journal="false" userdata="true"
realTimeIOs="0" realTimeIOsReserve="0" realTimeMB="0"
realTimeMBReserve="0" realTimeTokenTimeout="0"
multipathMethod="rotate">

<affinities exclusive="true">
<affinity>Video</affinity>

</affinities>
<disk index="0" diskLabel="CvfsDisk2"
diskType="VideoDrive"/>
<disk index="1" diskLabel="CvfsDisk3"
diskType="VideoDrive"/>
<disk index="2" diskLabel="CvfsDisk4"
diskType="VideoDrive"/>
<disk index="3" diskLabel="CvfsDisk5"
diskType="VideoDrive"/>
16 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
The Metadata Controller System
<disk index="4" diskLabel="CvfsDisk6"
diskType="VideoDrive"/>
<disk index="5" diskLabel="CvfsDisk7"
diskType="VideoDrive"/>
<disk index="6" diskLabel="CvfsDisk8"
diskType="VideoDrive"/>
<disk index="7" diskLabel="CvfsDisk9"
diskType="VideoDrive"/>

</stripeGroup>

Example (Windows)

[StripeGroup VideoFiles]
Status Up
StripeBreadth 4M
Metadata No
Journal No
Exclusive Yes
Read Enabled
Write Enabled
Rtmb 0
Rtios 0
RtmbReserve 0
RtiosReserve 0
RtTokenTimeout 0
MultiPathMethod Rotate
Node CvfsDisk2 0
Node CvfsDisk3 1
Node CvfsDisk4 2
Node CvfsDisk5 3
Node CvfsDisk6 4
Node CvfsDisk7 5
Node CvfsDisk8 6
Node CvfsDisk9 7
Affinity Video

BufferCacheSize

This setting consumes up to 2 bytes of memory times the number
specified.
StorNext File System Tuning Guide 17

Chapter 1: StorNext File System Tuning
The Metadata Controller System
Note: If multiple file systems are configured on the same MDC, this
setting must represent the total of the memory needed for all
the file systems on the MDC.

Increasing this value can reduce latency of any metadata operation by
performing a hot cache access to directory blocks, inode information,
and other metadata info. This is about 10 to 1000 times faster than I/O.
It is especially important to increase this setting if metadata I/O latency
is high, (for example, more than 2ms average latency). Quantum
recommends sizing this according to how much memory is available;
more is better. Optimal settings for BufferCacheSize range from 16MB
to 128MB for a new file system and can be increased up to 8GB as a file
system grows. A higher setting is more effective if the CPU is not heavily
loaded.

Example (Linux)

<bufferCacheSize>33554432</bufferCacheSize>

Example (Windows)

BufferCacheSize 32M

InodeCacheSize

This setting consumes about 800 to 1000 bytes of memory times the
number specified. Increasing this value can reduce latency of any
metadata operation by performing a hot cache access to inode
information instead of an I/O to get inode info from disk, about 100 to
1000 times faster. It is especially important to increase this setting if
metadata I/O latency is high, (for example, more than 2ms average
latency). You should try to size this according to the sum number of
working set files for all clients. Optimal settings for InodeCacheSize
range from 16K to 128K for a new file system and can be increased to
256K or 512K as a file system grows. A higher setting is more effective if
the CPU is not heavily loaded.

Example (Linux)

<inodeCacheSize>32768</inodeCacheSize>

Example (Windows)

InodeCacheSize 32K
18 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
The Metadata Controller System
ThreadPoolSize

This setting consumes up to 512 KB memory times the number
specified. Increasing this value can improve concurrency of metadata
operations. For example, if many client processes are executing
concurrently, the thread pool can become exhausted by I/O wait time.
Increasing the thread pool size permits hot cache operations to be
processed that would otherwise be backed up behind the I/O-bound
operations. There are various O/S limits to the number of threads that
can cause fatal problems for the FSM daemon, so it's not a good idea to
set this setting too high. A range from 32 to 128 is recommended,
depending on the amount of available memory.

Example (Linux)

<threadPoolSize>32</threadPoolSize>

Example (Windows)

ThreadPoolSize 32

FsBlockSize

The FsBlockSize (FSB), metadata disk size, and JournalSize settings
all work together. For example, the FsBlockSize must be set correctly
in order for the metadata sizing to be correct. JournalSize is also
dependent on the FsBlockSize.

For FsBlockSize the optimal settings for both performance and space
utilization are in the range of 16K or 64K.Settings greater than 64K are
not recommended because performance will be adversely impacted due
to inefficient metadata I/O operations. Values less than 16K are not
recommended in most scenarios because startup and failover time may
be adversely impacted. Setting FsBlockSize to higher values is
important for multiterabyte file systems for optimal startup and failover
time.

Note: However, values greater than 16K can severely consume
metadata space in cases where the file-to-directory ratio is low
(e.g., less than 100 to 1).

For metadata disk size, you must have a minimum of 25 GB, with more
space allocated depending on the number of files per directory and the
size of your file system.
StorNext File System Tuning Guide 19

Chapter 1: StorNext File System Tuning
The Metadata Controller System
The following table shows suggested FsBlockSize (FSB) settings and
metadata disk space based on the average number of files per directory
and file system size. The amount of disk space listed for metadata is in
addition to the 25 GB minimum amount. Use this table to determine the
setting for your configuration.

This setting is not adjustable after initial file system creation, so it is very
important to give it careful consideration during initial configuration.

Example (Linux)

<config configVersion="0" name="example"
fsBlockSize="16384" journalSize="16777216">

Average No.
of Files Per
Directory

File System SIze: Less
Than 100TB

File System Size: 100TB
or Larger

Less than 10 FSB: 16KB
Metadata: 32 GB per 1M
files

FSB: 64KB
Metadata: 128 GB per
1M files

10-100 FSB: 16KB
Metadata: 8 GB per 1M
files

FSB: 64KB
Metadata: 32 GB per 1M
files
* Due to the potential for
increased metadata
overhead, configuring
file systems with a
capacity greater than
100TB capacity and less
than 100 files per
directory is not
recommended

100-1000 FSB: 64KB
Metadata: 8 GB per 1M
files

FSB: 64KB
Metadata: 8 GB per 1M
files

1000 + FSB: 64KB
Metadata: 4 GB per 1M
files

FSB: 64KB
Metadata: 4 GB per 1M
files
20 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
The Metadata Controller System
Example (Windows)

FsBlockSize 16K

JournalSize

The optimal settings for JournalSize are in the range between 16M
and 64M, depending on the FsBlockSize.

Caution: Quantum recommends a JournalSize setting equal to or
greater than 16M. A JournalSize setting that is small can
lead to delays in processing while waiting for journal writes
to the disk. While the minimum journal size is 4M with a 4k
FsBlockSize, even in this case a 16M JournalSize is
recommended.

Avoid values greater than 64M due to potentially severe impacts on
startup and failover times. Values at the higher end of the 16M-64M
range may improve performance of metadata operations in some cases,
although at the cost of slower startup and failover time.

The following table shows recommended settings. Choose the setting
that corresponds to your configuration.

This setting is adjustable using the cvupdatefs utility. For more
information, see the cvupdatefs man page.

Note: JournalSize should be evaluated after a few months of use by
viewing the hourly statistics and looking for any journal waits.
If there are many in a single hour, consider increasing the
journal size and then reexamine the hourly statistics to see if
the bottleneck has moved to some other part of the file system
(like ThreadPoolSize or cache misses) or the hardware (high
sysmax and sysavg times).

FsBlockSize JournalSize

16KB 16MB

64KB 64MB
StorNext File System Tuning Guide 21

Chapter 1: StorNext File System Tuning
The Metadata Controller System
Example (Linux)

<config configVersion="0" name="example"
fsBlockSize="16384" journalSize="16777216">

Example (Windows)

JournalSize 16M

SNFS Tools The snfsdefrag tool is very useful to identify and correct file extent
fragmentation. Reducing extent fragmentation can be very beneficial
for performance. You can use this utility to determine whether files are
fragmented, and if so, fix them.

The global configuration settings InodeExpandMin, InodeExpandInc,
and InodeExpandMax have been deprecated and settings are instead
calculated on a file-by-file basis as allocations are performed. This
results in better allocations for more files as the values are no longer a
compromise if there are widely varying file types on the file system.
However, if a majority of the files are still fragmented, then these values
can be adjusted and will override the default behavior.

Note: Beginning with StorNext 4.0, the InodeExpand parameters
have been replaced by a new method called Optimistic
Allocation. Although the InodeExpand parameters can still be
entered and used in StorNext 4.0 and later, Quantum
recommends using Optimistic Allocation instead.

For a comparison between InodeExpand and Optimistic
Allocation, see Optimistic Allocation on page 27.

The InodeExpand parameters are file system wide and can be adjusted
after the file system has been created. The cachebufsize parameter is a
mount option and can be unique for every client that mounts the file
system.

FSM hourly statistics reporting is another very useful tool. This can
show you the mix of metadata operations being invoked by client
processes, as well as latency information for metadata operations and
metadata and journal I/O.

This information can be easily accessed in qustat output. See the qustat
man page or help files for more information.
22 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
The Metadata Controller System
• Extremely high values for ICa Hits + ICa Misses, Tkn Req Inode, or
Tkn Req Allc might indicate excessive file fragmentation. If so, the
snfsdefrag utility can be used to fix the fragmented files.

• The TIM-type VOP and TKN summary statistics show microsecond
queue and execution latency for the various metadata operations.
This shows what type of metadata operations are most prevalent
and most costly. These are also broken out per client, which can be
useful to identify a client that is disproportionately loading the FSM.

SNFS supports the Windows Perfmon utility (see Windows Performance
Monitor Counters on page 48). This provides many useful statistics
counters for the SNFS client component. Run rmperfreg.exe and
instperfreg.exe to set up the required registry settings. Next, call cvdb -
P. After these steps, the SNFS counters should be visible to the Windows
Perfmon utility. If not, check the Windows Application Event log for
errors.

The cvcp utility is a higher performance alternative to commands such
as cp and tar. The cvcp utility achieves high performance by using
threads, large I/O buffers, preallocation, stripe alignment, DMA I/O
transfer, and Bulk Create. Also, the cvcp utility uses the SNFS External
API for preallocation and stripe alignment. In the directory-to-directory
copy mode (for example, cvcp source_dir destination_dir,) cvcp
conditionally uses the Bulk Create API to provide a dramatic small file
copy performance boost. However, it will not use Bulk Create in some
scenarios, such as non-root invocation, managed file systems, quotas,
or Windows security. When Bulk Create is utilized, it significantly boosts
performance by reducing the number of metadata operations issued.
For example, up to 20 files can be created all with a single metadata
operation. For more information, see the cvcp man page.

The cvmkfile utility provides a command line tool to utilize valuable
SNFS performance features. These features include preallocation, stripe
alignment, and affinities. See the cvmkfile man page.

The Lmdd utility is very useful to measure raw LUN performance as well
as varied I/O transfer sizes. It is part of the lmbench package and is
available from http://sourceforge.net.

The cvdbset utility has a special “Perf” trace flag that is very useful to
analyze I/O performance. For example: cvdbset perf

Then, you can use cvdb -g to collect trace information such as this:

PERF: Device Write 41 MB/s IOs 2 exts 1 offs 0x0 len
0x400000 mics 95589 ino 0x5
StorNext File System Tuning Guide 23

Chapter 1: StorNext File System Tuning
The Metadata Controller System
PERF: VFS Write EofDmaAlgn 41 MB/s offs 0x0 len 0x400000
mics 95618 ino 0x5

The “PERF: Device” trace shows throughput measured for the device I/O.
It also shows the number of I/Os into which it was broken, and the
number of extents (sequence of consecutive filesystem blocks).

The “PERF: VFS” trace shows throughput measured for the read or write
system call and significant aspects of the I/O, including:

• Dma: DMA

• Buf: Buffered

• Eof: File extended

• Algn: Well-formed DMA I/O

• Shr: File is shared by another client

• Rt: File is real time

• Zr: Hole in file was zeroed

Both traces also report file offset, I/O size, latency (mics), and inode
number.

Sample use cases:

• Verify that I/O properties are as expected.

You can use the VFS trace to ensure that the displayed properties
are consistent with expectations, such as being well formed;
buffered versus DMA; shared/non-shared; or I/O size. If a small I/O is
being performed DMA, performance will be poor. If DMA I/O is not
well formed, it requires an extra data copy and may even be broken
into small chunks. Zeroing holes in files has a performance impact.

• Determine if metadata operations are impacting performance.

If VFS throughput is inconsistent or significantly less than Device
throughput, it might be caused by metadata operations. In that
case, it would be useful to display “fsmtoken,” “fsmvnops,” and
“fsmdmig” traces in addition to “perf.”

• Identify disk performance issues.

If Device throughput is inconsistent or less than expected, it might
indicate a slow disk in a stripe group, or that RAID tuning is
necessary.

• Identify file fragmentation.
24 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
The Metadata Controller System
If the extent count “exts” is high, it might indicate a fragmentation
problem.This causes the device I/Os to be broken into smaller
chunks, which can significantly impact throughput.

• Identify read/modify/write condition.

If buffered VFS writes are causing Device reads, it might be
beneficial to match I/O request size to a multiple of the
“cachebufsize” (default 64KB; see mount_cvfs man page). Another
way to avoid this is by truncating the file before writing.

The cvadmin command includes a latency-test utility for measuring the
latency between an FSM and one or more SNFS clients. This utility
causes small messages to be exchanged between the FSM and clients as
quickly as possible for a brief period of time, and reports the average
time it took for each message to receive a response.

The latency-test command has the following syntax:

latency-test <index-number> [<seconds>]

latency-test all [<seconds>]

If an index-number is specified, the test is run between the currently-
selected FSM and the specified client. (Client index numbers are
displayed by the cvadmin who command). If all is specified, the test is
run against each client in turn.

The test is run for 2 seconds, unless a value for seconds is specified.

Here is a sample run:

snadmin (lsi) > latency-test

Test started on client 1 (bigsky-node2)... latency
55us

Test started on client 2 (k4)... latency 163us

There is no rule-of-thumb for “good” or “bad” latency values. The
observed latency for GbE is less than 60 microseconds. Latency can be
affected by CPU load or SNFS load on either system, by unrelated
Ethernet traffic, or other factors. However, for otherwise idle systems,
differences in latency between different systems can indicate differences
in hardware performance. (In the example above, the difference is a
Gigabit Ethernet and faster CPU versus a 100BaseT Ethernet and a
slower CPU.) Differences in latency over time for the same system can
indicate new hardware problems, such as a network interface going
bad.
StorNext File System Tuning Guide 25

Chapter 1: StorNext File System Tuning
The Metadata Controller System
If a latency test has been run for a particular client, the cvadmin who
long command includes the test results in its output, along with
information about when the test was last run.

Mount Command
Options

The following SNFS mount command settings are explained in greater
detail in the mount_cvfs man page.

The default size of the client buffer cache varies by platform and main
memory size, and ranges between 32MB and 256MB. And, by default,
each buffer is 64K so the cache contains between 512 and 4096 buffers.
In general, increasing the size of the buffer cache will not improve
performance for streaming reads and writes. However, a large cache
helps greatly in cases of multiple concurrent streams, and where files
are being written and subsequently read. Buffer cache size is adjusted
with the buffercachecap setting.

The buffer cache I/O size is adjusted using the cachebufsize setting. The
default setting is usually optimal; however, sometimes performance can
be improved by increasing this setting to match the RAID 5 stripe size.

Using a large cachebufsize setting decreases random I/O performance
when the amount of data being read is smaller than the cache buffer
size.

The InodeExpand parameters are file system wide and can be adjusted
after the file system has been created. The cachebufsize parameter is a
mount option and can be unique for every client that mounts the file
system.

Buffer cache read-ahead can be adjusted with the
buffercache_readahead setting. When the system detects that a file is
being read in its entirety, several buffer cache I/O daemons pre-fetch
data from the file in the background for improved performance. The
default setting is optimal in most scenarios.

The auto_dma_read_length and auto_dma_write_length settings
determine the minimum transfer size where direct DMA I/O is
performed instead of using the buffer cache for well-formed I/O. These
settings can be useful when performance degradation is observed for
small DMA I/O sizes compared to buffer cache.

For example, if buffer cache I/O throughput is 200 MB/sec but 512K
DMA I/O size observes only 100MB/sec, it would be useful to determine
which DMA I/O size matches the buffer cache performance and adjust
26 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
Optimistic Allocation
auto_dma_read_length and auto_dma_write_length accordingly. The
lmdd utility is handy here.

The dircachesize option sets the size of the directory information cache
on the client. This cache can dramatically improve the speed of readdir
operations by reducing metadata network message traffic between the
SNFS client and FSM. Increasing this value improves performance in
scenarios where very large directories are not observing the benefit of
the client directory cache.

SNFS External API The SNFS External API might be useful in some scenarios because it
offers programmatic use of special SNFS performance capabilities such
as affinities, preallocation, and quality of service. For more information,
see the “Quality of Service” chapter of the StorNext File System API
Guide posted here (click the “Select a StorNext Version” menu to view
the desired documents):

http://www.quantum.com/sndocs

Optimistic Allocation

Starting with StorNext 4.0, the InodeExpand parameters
(InodeExpandMin, InodeExpandInc, and InodeExpandMax) in the file
system configuration file have been deprecated and replaced by a
simple formula that should work better in most cases, especially with
very large files.

The InodeExpand values are still honored if they are in the .cfgx file,
but the StorNext GUI no longer lets you set these values. Furthermore,
when converting to StorNext 4.0 and later, during the .cfg to .cfgx
conversion process, if the InodeExpand values in the .cfg file are found
to be the default example values, these values are not set in the new
.cfgx. Instead, the new formula is used.

The original InodeExpand configuration was difficult to explain, which
could lead to misconfigurations that caused either over or under
allocations (resulting in wasted space or fragmentation,) which is why
the new formula seeks to use allocations that are a percentage of the
existing file's size to minimize wasted space and fragmentation.
StorNext File System Tuning Guide 27

http://www.quantum.com/sndocs

Chapter 1: StorNext File System Tuning
Optimistic Allocation
How Optimistic
Allocation Works

The InodeExpand values come into play whenever a write to disk is
done, and works as an "optimistic allocator." It is referred to as
“optimistic” because it works under the assumption that where there is
one allocation, there will be another, so it allocates more than you asked
for believing that you'll use the over-allocated space soon.

There are three ways to do a DMA I/O:

• By having an I/O larger than auto_dma_write_length (or
auto_dma_read_length, but that doesn't cause an allocation so it
will be ignored for this case)

• Doing a write to a file that was opened with O_DIRECT

• Opening a file for writes that's already open for writes by another
client (commonly referred to as "shared write mode" which requires
all I/Os go straight to disk to maintain coherency between the
clients)

The first allocation is the larger of the InodeExpandMin or the actual IO
size. For example, if the InodeExpandMin is 2MB and the initial IO is
1MB, the file gets a 2MB allocation. However, if the initial IO was 3MB
and the InodeExpandMin is 2MB, the file gets only a 3MB allocation.

In both cases, the InodeExpandMin value is saved in an internal data
structure in the file's inode, to be used with subsequent allocations.
Subsequent DMA IOs that require more space to be allocated for the file
add to the InodeExpandInc value saved in the inode, and the
allocation is the larger of this value or the IO size.

For example, if InodeExpandMin is 2MB and InodeExpandInc is 4MB
and the first I/O is 1MB, then the file is initially 2MB in size. On the third
1MB I/O the file is extended by 6MB (2MB + 4MB) and is now 8MB
though it only has 3MB of data in it. However, that 6MB allocation is
likely contiguous and therefore the file has at most 2 fragments which is
better than 8 fragments it would have had otherwise.

Assuming there are more 1MB I/Os to the file, it will continue to expand
in this manner. The next DMA I/O requiring an allocation over the 8MB
mark will extend the file by 10MB (2MB + 4MB + 4MB). This pattern
repeats until the file's allocation value is equal to or larger than
InodeExpandMax, at which point it's capped at InodeExpandMax.

This formula generally works well when it's tuned for the specific I/O
pattern. If it's not tuned, with certain I/O patterns it can cause
suboptimal allocations resulting in excess fragmentation or wasted
space from files being over allocated.
28 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
Optimistic Allocation
This is especially true if there are small files created with O_DIRECT, or
small files that are simultaneously opened by multiple clients which
cause them to use an InodeExpandMin that's too large for them.
Another possible problem is an InodeExpandMax that's too small,
causing the file to be composed of fragments smaller than it otherwise
could have been created with.

With very large files, without increasing InodeExpandMax, it can create
fragmented files due to the relatively small size of the allocations and
the large number that are needed to create a large file.

Another possible problem is an InodeExpandInc that's not aggressive
enough, again causing a file to be created with more fragments than it
could be created with, or to never reach InodeExpandMax because
writes stop before it can be incremented to that value.

Note: Although the preceding example uses DMA I/O, the
InodeExpand parameters apply to both DMA and non-DMA
allocations.

Optimistic Allocation
Formula

The following table shows the new formula (beginning with StorNext
4.x):

File Size (in bytes) Optimistic Allocation

<= 16MB 1MB

16MB to 64MB + 4 bytes 4MB

64MB + 4 bytes to 256MB + 16 bytes 16MB

256MBs + 16 bytes to 1 GB + 64 bytes 64MB

1GB + 64 bytes to 4GB + 256 bytes 256MB

4GB + 256 bytes to 16GB + 1k bytes 1GB

16GB + 1k bytes to 64GB + 4k bytes 4GB

64GB + 4k bytes to 256GB + 16k bytes 16GB

256GB + 16k bytes to 1TB + 64k bytes 64GB
StorNext File System Tuning Guide 29

Chapter 1: StorNext File System Tuning
Optimistic Allocation
To examine how well these allocation strategies work in your specific
environment, use the snfsdefrag utility with the -e option to display
the individual extents (allocations) in a file.

Here is an example output from snfsdefrag -e testvideo2.mov:
testvideo2.mov:
group frbase fsbase fsend kbytes depth
0 7 0x0 0xa86df6 0xa86df6 16 4
1 7 0x4000 0x1fb79b0 0x1fb79e1 800 4
HOLE @ frbase 0xcc000 for 41 blocks (656 kbytes)
2 7 0x170000 0x57ca034 0x57ca03f 192 4
3 7 0x1a0000 0x3788860 0x3788867 128 4
4 7 0x1c0000 0x68f6cb4 0x68f6cff 1216 4
5 7 0x2f0000 0x70839dd 0x70839df 48 4

Here is an explanation of the column headings:

• #: This is the extent index.

• group: The group column tells you which stripe group on which the
extent resides. Usually it's all on the same stripe group, but not
always.

• frbase: This is the file's logical offset

• fsbase and fsend: These are the StorNext logical start and end
addresses and should be ignored.

• kbytes: This is the size of the extent (fragment)

• depth: This tells you the number of LUNs that existed in the stripe
group when the file was written. If you perform bandwidth
expansion, this number is the old number of LUNs before
bandwidth expansion, and signifies that those files aren't taking
advantage of the bandwidth expansion.

If the file is sparse, you will see "HOLE" displayed. Having holes in a file
isn't necessarily a problem, but it does create extra fragments (one for
each side of the hole). Tuning to eliminate holes can reduce
fragmentation, although it does that by using more disk space.

1TB + 64k bytes or larger 256GB

File Size (in bytes) Optimistic Allocation
30 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
Special Considerations for StorNext LAN Clients
Special Considerations for StorNext LAN Clients

As with any client/server protocol, StorNext LAN performance is subject
to the limitations of the underlying network. Therefore, it is strongly
recommended that you use Gigabit (1000BaseT) or 10GbE. Both TCP
Offload and jumbo frames are recommended for 10GbE performance.

Hardware
Configuration

A StorNext LAN can easily saturate several Gigabit Ethernet connections
with data, so take special care when selecting and configuring the
switches used to interconnect StorNext LAN Clients and gateway
servers. Ensure that your network switches have enough internal
bandwidth to handle all of the anticipated traffic between all StorNext
LAN Clients and gateway servers connected to them.

A network switch that is dropping packets will cause TCP
retransmissions. This can be easily observed on both Linux and Windows
platforms by using the netstat -s command while the StorNext LAN
Client is reading or writing data to the file system. Reducing the TCP
window size used by the LAN might also help with an oversubscribed
network switch. The Windows client Distributed LAN tab and the Linux
dpserver file contain the tuning parameter for the TCP window size.
Note that the gateway must unmount and remount the StorNext file
system.

It is best practice to have all StorNext gateways directly attached to the
same network switch. A router between gateways could be easily
overwhelmed by the data rates required.

It is critical to ensure that speed/duplex settings are correct, as this will
severely impact performance. Most of the time auto-detect is the
correct setting. Some managed switches allow setting speed/duplex,
such as 1000Mb/full, which disables auto-detect and requires the host
to be set exactly the same. However, performance is severely impacted if
the settings do not match between switch and host. For example, if the
switch is set to auto-detect but the host is set to 1000Mb/full, you will
observe a high error rate and extremely poor performance. On Linux the
ethtool command can be very useful to investigate and adjust speed/
duplex settings.

In some cases, TCP offload seems to cause problems with the StorNext
LAN Clients by miscalculating checksums under heavy loads. This is
StorNext File System Tuning Guide 31

Chapter 1: StorNext File System Tuning
Special Considerations for StorNext LAN Clients
indicated by bad segments indicated in the output of netstat -s. On
Linux, the TCP offload state can be queried by running ethtool -k, and
modified by running ethtool -K. On Windows it is configured through
the Advanced tab of the configuration properties for a network
interface.

The internal bus bandwidth of a StorNext Gateway server can also place
a limit on performance. A basic PCI- or PCI-X-based workstation might
not have enough bus bandwidth to run multiple Gigabit Ethernet NICs
at full speed; PCI Express is recommended but not required.

Similarly, the performance characteristics of NICs can vary widely and
ultimately limit the performance of the StorNext LAN Client Client. For
example, some NICs might be able to transmit or receive each packet at
Gigabit speeds, but not be able to sustain the maximum needed packet
rate. An inexpensive 32-bit NIC plugged into a 64-bit PCI-X slot is
incapable of fully utilizing the host's bus bandwidth.

It can be useful to use a tool like netperf to help verify the performance
characteristics of each StorNext LAN Client. (When using netperf, on a
system with multiple NICs, take care to specify the right IP addresses in
order to ensure the network being tested is the one you use for the
StorNext LAN. For example, if netperf -t TCP_RR -H <host> reports
less than 4,000 transactions per second capacity, a performance penalty
might be incurred. Multiple copies of netperf can also be run in parallel
to determine the performance characteristics of multiple NICs.

Software Tuning and
Configuration

Full line speed is typically achievable for small configurations without
tuning. However, when scaling to larger configurations (for example,
10GbE), tuning is often required for maximum performance. The
following contains a set of tunables for such environments. The
applicability of each tunable will depend on ecosystem details and
application behavior. In some cases, experimentation may be required to
determine optimal values.

Modifying the grub.conf File

A fix is required prior to installing the StorNext file system and Storage
Manager. This fix avoids potential clock jumps and temporary system
freezes on some systems. This fix only affects RedHat Linux releases 6.0,
6.1, 6.2 and their CentOS counterparts on systems with Intel processor
versions identified by the internal codename Nehalem.
32 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
Special Considerations for StorNext LAN Clients
Follow the steps below to modify the grub.conf file so that the Intel
sleep state is disabled. Making this change could result in increased
power consumption, but it helps prevent problems which result in
system hangs due to processor power transition.

1 For the above systems, prior to installation:

Add the following text to the "kernel" line in /boot/grub/:

grub.conf:Idle=polling intel_idle.max_cstate=0
processor.max_cstate=1

2 Reboot the system for the change to take effect.

When creating a new file system, use Stripe Breadth values of
512K or larger

Where to Set This On the StorNext MDC

How to Set This Use the StorNext GUI, the Windows File
System Cfg tool, or run the command
sndcfgedit.

How This Helps While the value of
transfer_buffer_size_kb in the dpserver
file determines the maximum transfer size
used by DLC, this is artificially capped when
the Stripe Breadth is a smaller value.
Therefore, using a 512K Stripe Breadth allows
maximum value of
transfer_buffer_size_kb (512K) to be in
effect.

Notes and Caveats Using a value larger than 512K will not
improve performance over 512K for DLC. The
Stripe Breadth of a Stripe Group cannot be
changed after a file system has been created
without re-initializing the file system. While a
value of 512K or larger is optimal for DLC
network transfers, depending on the RAID
type and configuration, it may not be
optimal for SAN disk I/O.
StorNext File System Tuning Guide 33

Chapter 1: StorNext File System Tuning
Special Considerations for StorNext LAN Clients
Use the maximum value (512) for transfer_buffer_size_kb in
the dpservers file

Use a larger than default value for transfer_buffer_count in
the dpservers file

Where to Set This On Gateway systems

How to Set This Run the command sndpscfg –e or
sndpscfg –E fsname

How This Helps The DLC is more efficient when larger
transfer buffers are used.

Notes and Caveats The transfer buffer size is artificially capped
when smaller stripe breadths are used. See
When creating a new file system, use Stripe
Breadth values of 512K or larger. Also, using
a large values for
transfer_buffer_size_kb and
transfer_buffer_count can lead to
significant memory utilization on the
gateway systems since each proxy
connection can use up to the product of the
two values. This can become a real issue
when there are many DLC clients and/or
multiple file systems.

Where to Set This On Gateway systems

How to Set This Run the command sndpscfg –e or
sndpscfg –E fsname and set
transfer_buffer_count to some value
greater than 16.

How This Helps Having additional buffers may allow for
better pipe-lining and processing multiple
requests from a single client.
34 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
Special Considerations for StorNext LAN Clients
Use the maximum value (2048) for tcp_window_size_kb in
the dpservers file

Set the cache buffer size to 512K in the file system mount
options

Notes and Caveats Using a large values for
transfer_buffer_size_kb and
transfer_buffer_count can lead to
significant memory utilization on the
gateway systems since each proxy
connection can use up to the product of the
two values. This can become a real issue
when there are many DLC clients and/or
multiple file systems.

Where to Set This On Gateway systems

How to Set This Run the command sndpscfg –e or
sndpscfg –E fsname

How This Helps TCP performance is limited when the
advertised receive window is less than the
delay-bandwidth product of the underlying
network so using a larger value for
tcp_window_size_kb can improve
performance on high-speed (or high latency)
networks.

Notes and Caveats In order for this to be effective, systems must
have TCP Window Scaling (RFC1323)
enabled. See additional tunables below. Very
low-end networking components may not
support or have resource capacity to handle
large TCP windows.

Where to Set This On DLC clients
StorNext File System Tuning Guide 35

Chapter 1: StorNext File System Tuning
Special Considerations for StorNext LAN Clients
Use large values for “auto_dma” settings in the file system
mount options

How to Set This On Linux: Edit the file /etc/fstab and add
the option cachebufsize=512k for the
StorNext file system.

On Solaris: Edit the file /etc/vfstab and
add the option cachebufsize=512k for the
StorNext file system.
On Windows: Open the Client
Configuration tool, double-click the file
system, navigate to the Advanced Cache
Options tab, and set the Individual
Buffer Size to 512K.

How This Helps Using larger cache buffer sizes allows the file
system to make larger requests to gateway
systems when buffered I/O is used. A value of
512K allows transfers up to the maximum
value of transfer_buffer_size_kb.

Notes and Caveats Increasing the cache buffer size may
negatively impact the performance of small,
random I/Os. For this tunable to be effective,
transfer_buffer_size_kb and stripe
breadth should also be tuned. See above.

Where to Set This On Linux and Windows DLC clients

How to Set This On Linux: Edit the file /etc/fstab and add
the options auto_dma_read_length=2g,
auto_dma_write_length=2g for the
StorNext file system.

On Solaris: Does not apply.

On Windows: Open the Client
Configuration tool, double-click the file
system, navigate to the Advanced Cache
Options tab, and set the Auto-DMA Read
Size and Auto-DMA Write Size to 2G.
36 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
Special Considerations for StorNext LAN Clients
Enable TCP Window Scaling (RFC1323)

How This Helps By default, StorNext uses DMA when
performing large, well-formed I/Os. This is
typically a performance win for SAN-client
access, but the additional latencies in LAN
client often cause DMA to under-perform
buffered I/O. By increasing the auto_dma
settings, LAN client will used buffered I/O in
more cases.

Notes and Caveats With these settings in place, additional CPU
and memory bandwidth utilization may
occur when large, well-formed I/Os are used
compared with allowing such requests to use
DMA. On modern systems with increased
memory bandwidth and CPU cores, this
additional overhead often does not have a
significant impact.

Where to Set This On DLC clients and gateway systems
StorNext File System Tuning Guide 37

Chapter 1: StorNext File System Tuning
Special Considerations for StorNext LAN Clients
How to Set This On Linux: Modern versions of Linux have TCP
window scaling enabled by default. However,
the value can be set explicitly using the
sysctl command. For example, sysctl –w
net.ipv4.tcp_window_scaling=1. To
determine the correct kernel parameter to
adjust, refer to the documentation for your
version of Linux.

On Solaris: Newer versions of Solaris have
TCP window scaling enabled by default.
However, the value can be set explicitly using
the ndd command. For example, ndd –set /
dev/tcp tcp_wscale_always 1. To
determine the correct kernel parameter to
adjust, refer to the documentation for your
version of Solaris.

On Windows: For Vista and newer, TCP
window scaling is enabled by default. For
previous version of Windows including
Windows 2003 and Window XP, add or set
the DWORD key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentCo
ntrolSet\Services\Tcpip\Parameters\
Tcp1323Opts

To the value of 3.

How This Helps When Window scaling is enabled, the
advertised TCP receive window can be larger
than 64K. This is required to achieve
maximum per-connection bandwidth when
high-speed or high-latency networks are
used.

Notes and Caveats Window scaling must be enabled on both
ends of a connection to be effective. In the
case of DLC, this means the gateway and LAN
client.
38 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
Special Considerations for StorNext LAN Clients
Increase the system maximum TCP Window size

Where to Set This On DLC clients and gateway systems

How to Set This On Linux: Run the sysctl command to
adjust rmem_max and wmem_max. For
example,

 sysctl -w
net.core.rmem_max=4194304
 sysctl -w
net.core.wmem_max=4194304

The exact syntax may vary by Linux version.
For details, refer to the documentation for
your version of Linux.

On Solaris: Run ndd. For example, ndd -set
/dev/tcp tcp_max_buf 4194304

The exact syntax may vary by Solaris version.
For details, refer to the documentation for
your version of Solaris.

On Windows: Systems running Vista or
newer do not require adjustment. For older
versions of Windows, add or set the DWORD
keys:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentCo
ntrolSet\Services\Tcpip\Parameters\
TcpWindowSize

HKEY_LOCAL_MACHINE\SYSTEM\CurrentCo
ntrolSet\Services\Tcpip\Parameters\
GlobalMaxTcpWindowSize

These should both be set to a value of 4MB
(0x400000 or 4194304) or greater.
StorNext File System Tuning Guide 39

Chapter 1: StorNext File System Tuning
Special Considerations for StorNext LAN Clients
Use Jumbo Frames (aka large MTU)

How This Helps High-speed and high-latency networks
require large TCP windows to achieve full
bandwidth. The tcp_window_size_kb
tunable is supposed to set the window for
the connection but it can be capped to a
smaller value due to the system-imposed
maximum.

Notes and Caveats Most modern operating systems set the
maximum to a large enough value by default.

Where to Set This On DLC clients and gateway systems

How to Set This On Linux: To modify the setting temporarily,
use the ifconfig command. For example,
ifconfig en6 mtu 9000 or to configure
Jumbo frames permanently, manually edit
the setting by adjusting files in /etc/
init.d/net or use the network
configuration GUI. Refer to the
documentation for your version of Linux for
details.

On Solaris: This is typically done by
configuring the setting accept-jumbo=1 in
the interface configuration. Refer to your
Solaris documentation.

On Windows: Refer to the driver
documentation for your NIC.

How This Helps For large data transfers, Jumbo frames
reduce the number of Ethernet frames that
need to be processed and increase the
percentage of payload data on the wire. This
results in higher payload bandwidth and
lower CPU overhead.
40 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
Special Considerations for StorNext LAN Clients
Use TCP offload features

Notes and Caveats To be effective, Jumbo frames must be
supported and enabled on all networking
hardware and software components
between the sender and receiver. Not all
Jumbo frame implementations are
compatible. When specifying a larger MTU,
depending on the context, the value may
need to include the header. For example,
9216 versus 9000. The use of jumbo frames
may slightly increase latency when
performing very small I/O. The benefit of
reduced CPU utilization may not be
significant if TCP offload is also enabled.

Where to Set This On DLC clients and gateway systems

How to Set This refer to the documentation for your NIC
driver.

How This Helps TCP processing is very CPU intensive. Most
modern NICs contain special hardware for
offloading some or all TCP processing. This
may include:
• Transmit Checksum Offload
• Receive Checksum Offload
• Large Segment Offload
• Full TCP Stack Offload (on Windows this

is called Chimney)
StorNext File System Tuning Guide 41

Chapter 1: StorNext File System Tuning
Special Considerations for StorNext LAN Clients
Tune Proxypath based on workload

Notes and Caveats Use of offload features may cause system
instability or degraded performance in some
cases. In most cases, full TCP stack offload
cannot be used when host-based software
firewalls (such as Windows Firewall) are
enabled. When Full TCP stack offload is used,
TCP connections will use congestion control
and other TCP algorithms that are hard-wired
in the NIC which may be sub-optimal
depending on the TCP stack being used by
the other end of the connection.

Where to Set This On DLC clients

How to Set This On Linux or Solaris: Edit the file /etc/fstab
and add the proxypath mount option with
the appropriate value.
On Windows: Open the Client
Configuration tool, double-click on the file
system, navigate to the Distributed LAN tab
and select the appropriate value from the
pull-down menu labeled Proxypath Mount
Option.

How This Helps Depending on the application profile, the
default value of file sticky balance may not be
appropriate. If most I/O is to one or a few
files, the balance option will probably do
better at load balancing to the servers.

Notes and Caveats For additional information on Linux or
Solaris, refer to the description of
proxypath in the mount_cvfs man-page.
For additional information on Windows,
navigate to Mount a StorNext File System
within StorNext Help and look the
description of proxypath.
42 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
Special Considerations for StorNext LAN Clients
Network Configuration
and Topology

For maximum throughput, a StorNext LAN Client can use multiple NICs
on StorNext Gateway servers. In order to take advantage of this feature,
each of the NICs on a given gateway must be on a different IP
subnetwork (this is a requirement of TCP/IP routing, not of SNFS - TCP/IP
can't utilize multiple NICs on the same subnetwork). An example of this
is shown in the following illustration.

Figure 1 Multi-NIC Hardware
and IP Configuration Diagram

In the diagram there are two subnetworks: the blue subnetwork
(10.0.0.x) and the red subnetwork (192.168.9.x). Servers such as S1 are
connected to both the blue and red subnetworks, and can each provide
up to 2 GByte/s of throughput to clients. (The three servers shown
would thus provide an aggregate of 6 GByte/s.)

Clients such as C1 are also connected to both the blue and red
subnetworks, and can each get up to 2 GByte/s of throughput. Clients
such as C2 are connected only to the blue subnetwork, and thus get a
maximum of 1 GByte/s of throughput. SNFS automatically load-balances
among NICs and servers to maximize throughput for all clients.
StorNext File System Tuning Guide 43

Chapter 1: StorNext File System Tuning
StorNext Gateway servers
Note: The diagram shows separate physical switches used for the two
subnetworks. They can, in fact, be the same switch, provided it
has sufficient internal bandwidth to handle the aggregate
traffic.

Scheduling requests across multiple subnetworks and multiple servers
via multiple network ports can be challenging. In particular, multiple
streams of large disk read requests, because of the additional latency
from disk, can lead to an imbalance of traffic across a client's network
ports. In some cases, it may be possible to tune this scheduling for a
particular application mix using the proxypath mount options. In other
cases, changing the network configuration might help. Matching the
number of server ports to the number of client ports, thereby reducing
the number of path choices, has been shown to improve the
performance of multiple streams of large reads.

For a detailed description of the proxypath mount options, see the
mount_cvfs man page.

StorNext Gateway servers

StorNext Gateway servers must have sufficient memory. When a
gateway server does not have sufficient memory, its performance in
servicing StorNext LAN I/O requests might suffer. In some cases
(particularly on Windows) it might hang.

Refer to the StorNext Release Notes for this release’s memory
requirements.

StorNext Gateway servers must also have sufficient bus bandwidth. As
discussed above, the host must have sufficient bus bandwidth to
operate the NICs used for StorNext LAN I/O at full speed, while at the
same time operating their Fibre Channel HBAs. Thus, Quantum strongly
recommends using PCI Express for gateway servers.
44 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
StorNext LAN Client vs. Legacy Network Attached Storage
StorNext LAN Client vs. Legacy Network Attached
Storage

StorNext provides support for legacy Network Attached Storage (NAS)
protocols, including Network File System (NFS) and Common Internet
File System (CIFS).

However, using StorNext LAN Clients for NAS connectivity provides
several compelling advantages in the following areas:

• Performance

• Fault Tolerance

• Load Balancing

• Client Scalability

• Robustness and Stability

• Security Model Consistency

Performance The StorNext LAN Clients outperform NFS and CIFS for single-stream I/O
and provide higher aggregate bandwidth. For inferior NFS client
implementations, the difference can be more than a factor of two.The
The StorNext LAN Client also makes extremely efficient use of multiple
NICs (even for single streams), whereas legacy NAS protocols allow only
a single NIC to be used. In addition, StorNext LAN Clients communicate
directly with StorNext metadata controllers instead of going through an
intermediate server, thereby lowering IOP latency.

Fault Tolerance StorNext LAN Clients handle faults transparently, where possible. If an I/
O is in progress and a NIC fails, the I/O is retried on another NIC (if one is
available). If a StorNext Gateway server fails while an I/O is in flight, the
I/O is retried on another server (if one is running). When faults occur,
applications performing I/O will experience a delay but not an error, and
no administrative intervention is required to continue operation. These
fault tolerance features are automatic and require no configuration.
StorNext File System Tuning Guide 45

Chapter 1: StorNext File System Tuning
Windows Memory Requirements
Load Balancing StorNext LAN Clients automatically makes use of all available gateway
servers in an active/active fashion, and evenly spreads I/O across them. If
a server goes down or one is added, the load balancing system
automatically adjusts to support the new configuration. For more
information on load balancing options, refer to the cvadmin command
in the Man Pages Reference Guide posted here (click the “Select a
StorNext Version” menu to view the desired documents):

http://www.quantum.com/sndocs

Consistent Security
Model

StorNext LAN Clients have the same security model as StorNext SAN
Clients. When CIFS and NFS are used, some security models aren’t
supported. (For example, Windows ACLs are not accessible when
running UNIX Samba servers.)

Windows Memory Requirements

Beginning in version 2.6.1, StorNext includes a number of performance
enhancements that enable it to better react to changing customer load.
However, these enhancements come with a price: memory requirement.

When running on a pre-Vista 32-bit system (that is, XP and 2003 Server)
system that is experiencing memory pressure, the tuning parameters
might need adjusting to avoid running the system out of non-paged
memory. To determine current operation, open the Task Manager and
watch the Nonpaged tag in the Kernel Memory pane in the lower right
hand corner. This value should be kept under 200MB. If the non-paged
pool approaches this size on a 32-bit system, instability might occur.

The problem will manifest itself by commands failing, messages being
sent to the system log about insufficient memory, the fsmpm
mysteriously dying, repeated FSM reconnect attempts, and messages
being sent to the application log and cvlog.txt about socket failures
with the status code (10555) which is ENOBUFS.

The solution is to adjust a few parameters on the Cache Parameters tab
in the SNFS control panel (cvntclnt). These parameters control how
46 StorNext File System Tuning Guide

http://www.quantum.com/sndocs

Chapter 1: StorNext File System Tuning
Windows Memory Requirements
much memory is consumed by the directory cache, the buffer cache,
and the local file cache.

As always, an understanding of the customers’ workload aids in
determining the correct values. Tuning is not an exact science, and
requires some trial-and-error (and the unfortunate reboots) to come up
with values that work best in the customer’s environment.

The first is the Directory Cache Size. The default is 10 (MB). If you do
not have large directories, or do not perform lots of directory scans, this
number can be reduced to 1 or 2 MB. The impact will be slightly slower
directory lookups in directories that are frequently accessed.

Also, in the Mount Option panel, you should set the Paged DirCache
option.

The next parameters control how many file structures are cached on the
client. These are controlled by the Meta-data Cache low water mark,
Meta-data Cache high water mark and Meta-data Cache Max water
mark. Each file structure is represented internally by a data structure
called the “cvnode.” The cvnode represents all the state about a file or
directory. The more cvnodes that there are encached on the client, the
fewer trips the client has to make over the wire to contact the FSM.

Each cvnode is approximately 1462 bytes in size and is allocated from
the non-paged pool. The cvnode cache is periodically purged so that
unused entries are freed. The decision to purge the cache is made based
on the Low, High, and Max water mark values. The 'Low' default is
1024, the 'High' default is 3072, and the 'Max' default is 4096.

These values should be adjusted so that the cache does not bloat and
consume more memory than it should. These values are highly
dependent on the customers work load and access patterns. Values of
512 for the High water mark will cause the cvnode cache to be purged
when more than 512 entries are present. The cache will be purged until
the low water mark is reached, for example 128. The Max water mark is
for situations where memory is very tight. The normal purge algorithms
takes access time into account when determining a candidate to evict
from the cache; in tight memory situations (when there are more than
'max' entries in the cache), these constraints are relaxed so that memory
can be released. A value of 1024 in a tight memory situation should
work.
StorNext File System Tuning Guide 47

Chapter 1: StorNext File System Tuning
Windows Performance Monitor Counters
Windows Performance Monitor Counters

For StorNext File Systems installed on Microsoft Windows servers,
Windows provides a way to display performance for individual
components in use on that StorNext system.

Performance counters are not enabled by default in the client. To enable
the performance counters, enter "cvdb -P" on the command line. "cvdb -
P" also toggles the state of the counters between on and off. To clear all
counters, disable the counters, and then re-enable the counters with
"cvdb -P".

To view the performance monitor counters:

1 Start the performance monitor.

For Windows XP, and 2000 systems:

a Click the Start Menu.

b Click Run.

c In the run dialog, enter:

perfmon.msc

For Windows Vista and later systems:

a Click the Start icon.

b In the “Search programs and files” dialog, enter:

perfmon

2 Click the "add counter" icon.

3 Select either "StorNext Client" or "StorNext Disk Agent".

Note: The "StorNext Disk Agent" counters are internal debugging/
diagnostic counters used by Quantum personnel and are not
helpful in performance tuning of your system.

4 Select an individual counter.

5 To display additional information about the counter:

For Windows XP and 2000 systems:

• Click the "Explain" button.
48 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
Cpuspeed Service Issue on Linux
For Windows Vista and later systems:

• Check the "Show description" checkbox.

Cpuspeed Service Issue on Linux

Cpuspeed, an external Linux service on recent Intel processors, is not
correctly tuned to allow StorNext to take advantage of processor speed.
Suse systems may also be impacted, as may AMD processors with
similar capabilities.
On processors with a variable clockspeed (turboboost), the cpuspeed
service on Redhat controls the actual running speed of the processors
based on system load.
A workload such as a heavily used FSM and probably Storage Manager
does not register as something which needs a faster cpu. Turning off the
cpuspeed service has been shown to double metadata performance on
affected hardware.

Looking at the reported CPU clock speed by doing cat /proc/ cpuinfo
while the system is under load shows if a system is impacted by this
issue.

How to Set max_cstate in Linux

To select acpi_idle, you must disable intel_idle.

1 Use acpi_idle and fixed the maximum cstate.

2 Specify both intel_idle.max_cstate=0 and
processor.max_cstate=n (n = 0 to 3)

3 Confirm.

4 After booting the OS, check dmseg and verify the following line:
StorNext File System Tuning Guide 49

Chapter 1: StorNext File System Tuning
Example FSM Configuration File
Caution: intel_idle.max_cstate=0 does not mean maximum
cstate=0(zero). This option disables intel_idle.

If you set intel_idle.max_cstate=n (n= 1 to 6), then intel_idle is
enabled and maximum cstate is set to n.

Example FSM Configuration File

On Linux, the StorNext configuration file uses an XML format (.cfgx). On
Windows, the configuration file uses a text format (.cfg). However, the
values contained in both files are similar.

You can locate an example StorNext configuration file in the following
directory:

• Linux — /usr/cvfs/examples/example.cfgx

• Windows — C:\Program Files\Stornext\config\example.cfg

If you installed StorNext in a location other than the default
installation directory, the example configuration file is located in
C:\<install_directory>\config\example.cfg

Linux Example
Configuration File

Below are the contents of the StorNext example configuration file for
Linux (example.cfgx):

<?xml version="1.0" encoding="UTF-8"?>
<configDoc xmlns="http://www.quantum.com/snfs" version="1.0">

<config configVersion="0" name="example" fsBlockSize="16384"
journalSize="16777216">

<globals>
<abmFreeLimit>false</abmFreeLimit>

intel_idle: disabledACPI: processor limited to max C-
state n
50 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
Example FSM Configuration File
<allocationStrategy>round</allocationStrategy>
<haFsType>HaUnmonitored</haFsType>
<bufferCacheSize>33554432</bufferCacheSize>
<cvRootDir>/</cvRootDir>
<storageManager>false</storageManager>
<dataMigrationThreadPoolSize>128</dataMigrationThreadPoolSize>
<debug>00000000</debug>
<dirWarp>true</dirWarp>
<extentCountThreshold>49152</extentCountThreshold>
<enableSpotlight>false</enableSpotlight>
<enforceAcls>false</enforceAcls>
<fileLocks>false</fileLocks>
<fileLockResyncTimeOut>20</fileLockResyncTimeOut>
<forcePerfectFit>false</forcePerfectFit>
<fsCapacityThreshold>0</fsCapacityThreshold>
<globalSuperUser>true</globalSuperUser>
<inodeCacheSize>32768</inodeCacheSize>
<inodeExpandMin>0</inodeExpandMin>
<inodeExpandInc>0</inodeExpandInc>
<inodeExpandMax>0</inodeExpandMax>
<inodeDeleteMax>0</inodeDeleteMax>
<inodeStripeWidth>0</inodeStripeWidth>
<maxConnections>32</maxConnections>
<maxLogs>4</maxLogs>
<remoteNotification>false</remoteNotification>
<reservedSpace>true</reservedSpace>
<fsmRealTime>false</fsmRealTime>
<fsmMemLocked>false</fsmMemLocked>
<opHangLimitSecs>180</opHangLimitSecs>
<perfectFitSize>131072</perfectFitSize>
<quotas>false</quotas>
<restoreJournal>false</restoreJournal>
<restoreJournalDir/>
<restoreJournalMaxHours>0</restoreJournalMaxHours>
<restoreJournalMaxMb>0</restoreJournalMaxMb>
<stripeAlignSize>0</stripeAlignSize>
<trimOnClose>0</trimOnClose>
<threadPoolSize>32</threadPoolSize>
StorNext File System Tuning Guide 51

Chapter 1: StorNext File System Tuning
Example FSM Configuration File
<unixDirectoryCreationModeOnWindows>644</
unixDirectoryCreationModeOnWindows>
<unixIdFabricationOnWindows>false</unixIdFabricationOnWindows>
<unixFileCreationModeOnWindows>755</unixFileCreationModeOnWindows>
<unixNobodyUidOnWindows>60001</unixNobodyUidOnWindows>
<unixNobodyGidOnWindows>60001</unixNobodyGidOnWindows>
<windowsSecurity>true</windowsSecurity>
<eventFiles>true</eventFiles>
<eventFileDir/>
<allocSessionReservation>false</allocSessionReservation>

</globals>
<diskTypes>

<diskType typeName="MetaDrive" sectors="99999999" sectorSize="512"/>
<diskType typeName="JournalDrive" sectors="99999999" sectorSize="512"/>
<diskType typeName="VideoDrive" sectors="99999999" sectorSize="512"/>
<diskType typeName="AudioDrive" sectors="99999999" sectorSize="512"/>
<diskType typeName="DataDrive" sectors="99999999" sectorSize="512"/>

</diskTypes>
<stripeGroups>

<stripeGroup index="0" name="MetaFiles" status="up"
stripeBreadth="262144" read="true" write="true" metadata="true"
journal="false" userdata="false" realTimeIOs="200"
realTimeIOsReserve="1" realTimeMB="200" realTimeMBReserve="1"
realTimeTokenTimeout="0" multipathMethod="rotate">

<disk index="0" diskLabel="CvfsDisk0" diskType="MetaDrive"/>
</stripeGroup>
<stripeGroup index="1" name="JournFiles" status="up"
stripeBreadth="262144" read="true" write="true" metadata="false"
journal="true" userdata="false" realTimeIOs="0" realTimeIOsReserve="0"
realTimeMB="0" realTimeMBReserve="0" realTimeTokenTimeout="0"
multipathMethod="rotate">

<disk index="0" diskLabel="CvfsDisk1" diskType="JournalDrive"/>
</stripeGroup>
<stripeGroup index="2" name="VideoFiles" status="up"
stripeBreadth="4194304" read="true" write="true" metadata="false"
journal="false" userdata="true" realTimeIOs="0" realTimeIOsReserve="0"
realTimeMB="0" realTimeMBReserve="0" realTimeTokenTimeout="0"
multipathMethod="rotate">

<affinities exclusive="true">
52 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
Example FSM Configuration File
<affinity>Video</affinity>
</affinities>
<disk index="0" diskLabel="CvfsDisk2" diskType="VideoDrive"/>
<disk index="1" diskLabel="CvfsDisk3" diskType="VideoDrive"/>
<disk index="2" diskLabel="CvfsDisk4" diskType="VideoDrive"/>
<disk index="3" diskLabel="CvfsDisk5" diskType="VideoDrive"/>
<disk index="4" diskLabel="CvfsDisk6" diskType="VideoDrive"/>
<disk index="5" diskLabel="CvfsDisk7" diskType="VideoDrive"/>
<disk index="6" diskLabel="CvfsDisk8" diskType="VideoDrive"/>
<disk index="7" diskLabel="CvfsDisk9" diskType="VideoDrive"/>

</stripeGroup>
<stripeGroup index="3" name="AudioFiles" status="up"
stripeBreadth="1048576" read="true" write="true" metadata="false"
journal="false" userdata="true" realTimeIOs="0" realTimeIOsReserve="0"
realTimeMB="0" realTimeMBReserve="0" realTimeTokenTimeout="0"
multipathMethod="rotate">

<affinities exclusive="true">
<affinity>Audio</affinity>

</affinities>
<disk index="0" diskLabel="CvfsDisk10" diskType="AudioDrive"/>
<disk index="1" diskLabel="CvfsDisk11" diskType="AudioDrive"/>
<disk index="2" diskLabel="CvfsDisk12" diskType="AudioDrive"/>
<disk index="3" diskLabel="CvfsDisk13" diskType="AudioDrive"/>

</stripeGroup>
<stripeGroup index="4" name="RegularFiles" status="up"
stripeBreadth="262144" read="true" write="true" metadata="false"
journal="false" userdata="true" realTimeIOs="0" realTimeIOsReserve="0"
realTimeMB="0" realTimeMBReserve="0" realTimeTokenTimeout="0"
multipathMethod="rotate">

<disk index="0" diskLabel="CvfsDisk14" diskType="DataDrive"/>
<disk index="1" diskLabel="CvfsDisk15" diskType="DataDrive"/>
<disk index="2" diskLabel="CvfsDisk16" diskType="DataDrive"/>
<disk index="3" diskLabel="CvfsDisk17" diskType="DataDrive"/>

</stripeGroup>
</stripeGroups>

</config>
</configDoc>
StorNext File System Tuning Guide 53

Chapter 1: StorNext File System Tuning
Example FSM Configuration File
Windows Example
Configuration File

Below are the contents of the StorNext example configuration file for
Windows (example.cfg):
Globals

ABMFreeLimit no
AllocationStrategy Round
HaFsType HaUnmonitored
FileLocks No
BrlResyncTimeout 20
BufferCacheSize 32M
CvRootDir /
DataMigration No
DataMigrationThreadPoolSize 128
Debug 0x0
DirWarp Yes
ExtentCountThreshold 48K
EnableSpotlight No
ForcePerfectFit No
FsBlockSize 16K
GlobalSuperUser Yes
InodeCacheSize 32K
InodeExpandMin 0
InodeExpandInc 0
InodeExpandMax 0
InodeDeleteMax 0
InodeStripeWidth 0
JournalSize 16M
MaxConnections 32
MaxLogs 4
PerfectFitSize 128K
RemoteNotification No
ReservedSpace Yes
FSMRealtime No
FSMMemlock No
OpHangLimitSecs 180
Quotas No
RestoreJournal No
RestoreJournalMaxHours 0
54 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
Example FSM Configuration File
RestoreJournalMaxMB 0
StripeAlignSize 0
TrimOnClose 0
ThreadPoolSize 32
UnixDirectoryCreationModeOnWindows 0644
UnixIdFabricationOnWindows No
UnixFileCreationModeOnWindows 0755
UnixNobodyUidOnWindows 60001
UnixNobodyGidOnWindows 60001
WindowsSecurity Yes
EventFiles Yes
AllocSessionReservation No
Disk Types

[DiskType MetaDrive]
Sectors 99999999
SectorSize 512
[DiskType JournalDrive]
Sectors 99999999
SectorSize 512
[DiskType VideoDrive]
Sectors 99999999
SectorSize 512
[DiskType AudioDrive]
Sectors 99999999
SectorSize 512
[DiskType DataDrive]
Sectors 99999999
SectorSize 512
Disks

[Disk CvfsDisk0]
Type MetaDrive
Status UP
[Disk CvfsDisk1]
Type JournalDrive
Status UP
[Disk CvfsDisk2]
StorNext File System Tuning Guide 55

Chapter 1: StorNext File System Tuning
Example FSM Configuration File
Type VideoDrive
Status UP
[Disk CvfsDisk3]
Type VideoDrive
Status UP
[Disk CvfsDisk4]
Type VideoDrive
Status UP
[Disk CvfsDisk5]
Type VideoDrive
Status UP
[Disk CvfsDisk6]
Type VideoDrive
Status UP
[Disk CvfsDisk7]
Type VideoDrive
Status UP
[Disk CvfsDisk8]
Type VideoDrive
Status UP
[Disk CvfsDisk9]
Type VideoDrive
Status UP
[Disk CvfsDisk10]
Type AudioDrive
Status UP
[Disk CvfsDisk11]
Type AudioDrive
Status UP
[Disk CvfsDisk12]
Type AudioDrive
Status UP
[Disk CvfsDisk13]
Type AudioDrive
Status UP
[Disk CvfsDisk14]
Type DataDrive
Status UP
56 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
Example FSM Configuration File
[Disk CvfsDisk15]
Type DataDrive
Status UP
[Disk CvfsDisk16]
Type DataDrive
Status UP
[Disk CvfsDisk17]
Type DataDrive
Status UP
Stripe Groups

[StripeGroup MetaFiles]
Status Up
StripeBreadth 256K
Metadata Yes
Journal No
Exclusive Yes
Read Enabled
Write Enabled
Rtmb 200
Rtios 200
RtmbReserve 1
RtiosReserve 1
RtTokenTimeout 0
MultiPathMethod Rotate
Node CvfsDisk0 0

[StripeGroup JournFiles]
Status Up
StripeBreadth 256K
Metadata No
Journal Yes
Exclusive Yes
Read Enabled
Write Enabled
Rtmb 0
Rtios 0
RtmbReserve 0
StorNext File System Tuning Guide 57

Chapter 1: StorNext File System Tuning
Example FSM Configuration File
RtiosReserve 0
RtTokenTimeout 0
MultiPathMethod Rotate
Node CvfsDisk1 0

[StripeGroup VideoFiles]
Status Up
StripeBreadth 4M
Metadata No
Journal No
Exclusive No
Read Enabled
Write Enabled
Rtmb 0
Rtios 0
RtmbReserve 0
RtiosReserve 0
RtTokenTimeout 0
MultiPathMethod Rotate
Node CvfsDisk2 0
Node CvfsDisk3 1
Node CvfsDisk4 2
Node CvfsDisk5 3
Node CvfsDisk6 4
Node CvfsDisk7 5
Node CvfsDisk8 6
Node CvfsDisk9 7
Affinity Video

[StripeGroup AudioFiles]
Status Up
StripeBreadth 1M
Metadata No
Journal No
Exclusive No
Read Enabled
Write Enabled
Rtmb 0
58 StorNext File System Tuning Guide

Chapter 1: StorNext File System Tuning
Example FSM Configuration File
Rtios 0
RtmbReserve 0
RtiosReserve 0
RtTokenTimeout 0
MultiPathMethod Rotate
Node CvfsDisk10 0
Node CvfsDisk11 1
Node CvfsDisk12 2
Node CvfsDisk13 3
Affinity Audio

[StripeGroup RegularFiles]
Status Up
StripeBreadth 256K
Metadata No
Journal No
Exclusive No
Read Enabled
Write Enabled
Rtmb 0
Rtios 0
RtmbReserve 0
RtiosReserve 0
RtTokenTimeout 0
MultiPathMethod Rotate
Node CvfsDisk14 0
Node CvfsDisk15 1
Node CvfsDisk16 2
Node CvfsDisk17 3
StorNext File System Tuning Guide 59

Chapter 1: StorNext File System Tuning
Ports Used By StorNext
Ports Used By StorNext

The following table lists ports that are used by StorNext and its ancillary
components.

For additional information about ports used by StorNext, see the
fsports(4) man page.

Port StorNext Use Notes

81 GUI (Java) User starts at port
81, redirected to 443

443 GUI (Java)

1527 GUI (Java connection
to derby db)

3307 GUI (Java connection
to MySQL)

1062, 1063 Blockpool Both ports if HA
primary

14500 snpolicyd

5164 fsmpm IOPS

5189 HA Manager Symbol
HAMGR_DEFAULT_PO
RT

Various fsm, fsmpm Change ports with
fsports file

20566 MySQL Only used internally
on an MDC.

60001,
60002 …

ACSLS Tape Libraries Not used by
StorNext, but related
60 StorNext File System Tuning Guide

Chapter 2
Allocation Session
Reservation (ASR)

Starting with StorNext 4.2, the Allocation Session Reservation (ASR)
feature provides another method of allocating space to regular files.
ASR optimizes on-disk allocation behavior in workflows (such as some
rich media streaming applications) which write and read sequences of
files of certain sizes in specific directories.

With ASR, file sequences in a directory are usually placed on disk based
on the order in which they are written. ASR keeps these files together
even if other applications are writing at the same time in different
directories or from different StorNext clients. The feature also has the
ability to reduce file system free space fragmentation since collections
of files which are written together are then typically removed together.

The workflows which see reduced free space fragmentation are those
which have concurrent applications each writing files in their own
directories and using files mostly larger than 1MB each. With this kind
of workflow, when a collection of files from one application is removed,
the space is freed up in big chunks which are independent of other
application runs.

Some workflows will see worse performance and may also see more free
space fragmentation with ASR. These workflows are those which have
concurrent applications all using the same directory on the same client,
or all writing the same file on different clients. Additionally,
performance may be adversely affected when stripe groups are
configured and used to distribute applications. (See Hotspots and
Locality on page 65.)
StorNext File System Tuning Guide 61

Chapter 2: Allocation Session Reservation (ASR)
Some applications depend on stripe alignment for performance. Stripe
alignment can cause the allocator to chop an allocation request to make
its head and tail land on a stripe boundary. The ASR feature disables
stripe alignment since the chopping can lead to even more free space
fragmentation since the chopping is within ASR chunks.

Customers should run with ASR and see if performance is adversely
affected. You can do this by turning On or Off by setting the size in the
configuration file or via the StorNext GUI and then restarting the FSM.
Then, run your application and measure performance.

The fact that files are kept together on a stripe group for the ASR chunk
size may improve performance and make stripe alignment unnecessary.

The ideal situation is for a system administrator to watch the system
both with and without ASR enabled. First, performance should be
monitored. Second, fragmentation can be checked. There are two kinds
of fragmentation:

1 Fragmentation within files.

2 Free space fragmentation.

Fragments within a collection of files can be counted using
snfsdefrag(1), e.g., snfsdefrag -t -r -c <directory>. This
command lists all the files and the number of extents in each file, and
then the total of all regular files, extents, and extents per file.

The command, cvfsck -a -f <file system> lists free space
fragments on each stripe group by chunk size, the total number of free
space fragments for each stripe group, and then the total number of
stripe groups and free space fragments for the entire file system. With
this tool, free space fragments can be counted before and after a
workflow is run. (“Workflows” should include normal administrative
cleanup and modifications which occur over time.)

Administrators are encouraged to monitor their system to see how
fragmentation is occurring.

The snfsdefrag(1) command can be run periodically to defragment
files, reducing the number of fragments in those files. This usually helps
reduce free space fragmentation, too.
62 StorNext File System Tuning Guide

Chapter 2: Allocation Session Reservation (ASR)
How ASR Works
How ASR Works

For details on how to set the “size” and enable this feature, refer to the
snfs_config(5) man page and the StorNext GUI’s online help. The man
page snfs_config(5) also contains an overview of how the ASR feature
works.

Because this “How ASR Works” section provides more detail, before
reading this section you should already be familiar with the man page
contents.

Allocation Sessions Allocation requests (which occur whenever a file is written to an area
that has no actual disk space allocated,) are grouped into sessions. A
chunk of space is reserved for a session. The size of the chunk is
determined using the configured size and the size of the allocation
request. If the allocation size is bigger than 1MB and smaller than 1/8th
the configured ASR chunk size, the ASR chunk size is rounded up to be a
multiple of the initial allocation request size.

There are three session types: small, medium (directory), and large
(file). The session type is determined by the file offset and requested
allocation size on a given allocation request.

• Small sessions are for sizes (offset + allocation size) smaller than
1MB.

• Medium sessions are for sizes 1MB through 1/10th of the
configured ASR size.

• Large sessions are sizes bigger than medium.

Here is another way to think of these three types: small sessions collect
or organize all small files into small session chunks; medium sessions
collect medium-sized files by chunks using their parent directory; and
large file allocations are collected into their own chunks and are
allocated independently of other files.

All sessions are client specific. Multiple writers to the same directory or
large file on different clients will use different sessions. Small files from
different clients use different chunks by client.

Small sessions use a smaller chunk size than the configured size. The
small chunk size is determined by dividing the configured size by 32.
StorNext File System Tuning Guide 63

Chapter 2: Allocation Session Reservation (ASR)
How ASR Works
For example, for 128 MB the small chunk size is 4 MB, and for 1 GB the
small chunk size is 32 MB. Small sessions do not round the chunk size. A
file can get an allocation from a small session only if the allocation
request (offset + size) is less than 1MB. When users do small I/O sizes
into a file, the client buffer cache coalesces these and minimizes
allocation requests. If a file is larger than 1MB and is being written
through the buffer cache, it will most likely have allocation on the order
of 16MB or so requests (depending on the size of the buffer cache on
the client and the number of concurrent users of that buffer cache).

With NFS I/O into a StorNext client, the StorNext buffer cache is used.
NFS on some operating systems breaks I/O into multiple streams per file.
These will arrive on the StorNext client as disjointed random writes.
These are typically allocated from the same session with ASR and are not
impacted if multiple streams (other files) allocate from the same stripe
group. ASR can help reduce fragmentation due to these separate NFS
generated streams.

Files can start using one session type and then move to another session
type. A file can start with a very small allocation (small session), become
larger (medium session), and end up reserving the session for the file. If
a file has more than 10% of a medium sized chunk, it “reserves” the
remainder of the session chunk it was using for itself. After a session is
reserved for a file, a new session segment will be allocated for any other
medium files in that directory.

Small chunks are never reserved.

When allocating subsequent pieces for a session, they are rotated
around to other stripe groups that can hold user data. This is done the
same was as InodeStripeWidth (ISW). (For more information about ISW,
refer to the snfs_config man page.)

The direction of rotation is determined by a combination of the session
key and the index of the client in the client table. The session key is
based on the inode number, so odd inodes will rotate in a different
direction from even inodes. Directory session keys are based on the
parent directory’s inode number.

Video Frame Per File
Formats

Video applications typically write one frame per file and place them in
their own unique directory, and then write them from the same
StorNext client. The file sizes are all greater than 1MB and smaller than
50 MB each and written/allocated in one I/O operation. Each file and
write land in “medium/directory” sessions.
64 StorNext File System Tuning Guide

Chapter 2: Allocation Session Reservation (ASR)
How ASR Works
For this kind of workflow, ASR is the ideal method to keep “streams” (a
related collection of frames in one directory) together on disk, thereby
preventing checker boarding between multiple concurrent streams. In
addition, when a stream is removed, the space can be returned to the
free space pool in big ASR pieces, reducing free space fragmentation
when compared to the default allocator.

Hotspots and Locality Suppose a file system has four data stripe groups and an ASR size of 1
GB. If four concurrent applications writing medium-sized files in four
separate directories are started, they will each start with their own 1 GB
piece and most likely be on different stripe groups.

Without ASR

Without ASR, the files from the four separate applications are
intermingled on disk with the files from the other applications. The
default allocator does not consider the directory or application in any
way when carving out space. All allocation requests are treated equally.
With ASR turned off and all the applications running together, any
hotspot is very short lived: the size of one allocation/file. (See the
following section for more information about hotspots.)

With ASR

Now consider the 4 GB chunks for the four separate directories. As the
chunks are used up, ASR allocates chunks on a new SG using rotation.
Given this rotation and the timings of each application, there are times
when multiple writers/segments will be on a particular stripe group
together. This is considered a “hotspot,” and if the application expects
more throughput than the stripe group can provide, performance will
be sub par.

At read time, the checker boarding on disk from the writes (when ASR is
off) can cause disk head movement, and then later the removal of one
application run can also cause free space fragmentation. Since ASR
collects the files together for one application, the read performance of
one application's data can be significantly better since there will be little
to no disk head movement.
StorNext File System Tuning Guide 65

Chapter 2: Allocation Session Reservation (ASR)
How ASR Works
Small Session Rationale Small files (those less than 1 MB) are placed together in small file chunks
and grouped by StorNext client ID. This was done to help use the
leftover pieces from the ASR size chunks and to keep the small files
away from medium files. This reduces free space fragmentation over
time that would be caused by the leftover pieces. Leftover pieces occur
in some rare cases, such as when there are many concurrent sessions
exceeding 500 sessions.

Large File Sessions and
Medium Session
Reservation

When an application starts writing a very large file, it typically starts
writing in some units and extending the file size. For this scenario,
assume the following:

• ASR is turned on, and the configured size is 1 GB.

• The application is writing in 2 MB chunks and writing a 10 GB file.

• ISW is set to 1 GB.

On the first I/O (allocation), an ASR session is created for the directory (if
one doesn't already exist,) and space is either stolen from an expired
session or a new 1 GB piece is allocated on some stripe group.

When the file size plus the request allocation size passes 100 MB, the
session will be converted from a directory session to a file-specific
session and reserved for this file. When the file size surpasses the ASR
size, chunks are reserved using the ISW configured size.

Returning to our example, the extents for the 10 GB file should start
with a 1 GB extent (assuming the first chunk wasn't stolen and a
partial,) and the remaining extents except the last one should all be 1
GB.

Following is an example of extent layout from one process actively
writing in it's own directory as described above:

root@per2:() -> snfsdefrag -e 10g.lmdd
10g.lmdd:
group frbase fsbase fsend kbytes depth
0 3 0x0 0xdd4028 0xde4027 1048576 1
1 4 0x40000000 0xdd488a 0xde4889 1048576 1
2 1 0x80000000 0x10f4422 0x1104421 1048576 1
3 2 0xc0000000 0x20000 0x2ffff 1048576 1
4 3 0x100000000 0xd34028 0xd44027 1048576 1
5 4 0x140000000 0xd9488a 0xda4889 1048576 1
66 StorNext File System Tuning Guide

Chapter 2: Allocation Session Reservation (ASR)
How ASR Works
6 1 0x180000000 0x10c4422 0x10d4421 1048576 1
7 2 0x1c0000000 0x30000 0x3ffff 1048576 1
8 3 0x200000000 0x102c028 0x103c027 1048576 1
9 4 0x240000000 0xd6c88a 0xd7c889 1048576 1

Here are the extent layouts of two processes writing concurrently but in
their own directory:

root@per2:() -> lmdd of=1d/10g bs=2m move=10g & lmdd of=2d/10g bs=2m move=10g &
[1] 27866
[2] 27867
root@per2:() -> wait
snfsdefrag -e 1d/* 2d/*
10240.00 MB in 31.30 secs, 327.14 MB/sec
[1]- Done lmdd of=1d/10g bs=2m move=10g
10240.00 MB in 31.34 secs, 326.74 MB/sec
[2]+ Done lmdd of=2d/10g bs=2m move=10g
root@per2:() ->
root@per2:() -> snfsdefrag -e 1d/* 2d/*
1d/10g:
group frbase fsbase fsend kbytes depth
0 1 0x0 0xf3c422 0xf4c421 1048576 1
1 4 0x40000000 0xd2c88a 0xd3c889 1048576 1
2 3 0x80000000 0xfcc028 0xfdc027 1048576 1
3 2 0xc0000000 0x50000 0x5ffff 1048576 1
4 1 0x100000000 0x7a0472 0x7b0471 1048576 1
5 4 0x140000000 0xc6488a 0xc74889 1048576 1
6 3 0x180000000 0xcd4028 0xce4027 1048576 1
7 2 0x1c0000000 0x70000 0x7ffff 1048576 1
8 1 0x200000000 0x75ef02 0x76ef01 1048576 1
9 4 0x240000000 0xb9488a 0xba4889 1048576 1

2d/10g:
group frbase fsbase fsend kbytes depth
0 2 0x0 0x40000 0x4ffff 1048576 1
1 3 0x40000000 0xffc028 0x100c027 1048576 1
2 4 0x80000000 0xca488a 0xcb4889 1048576 1
3 1 0xc0000000 0xedc422 0xeec421 1048576 1
4 2 0x100000000 0x60000 0x6ffff 1048576 1
5 3 0x140000000 0xea4028 0xeb4027 1048576 1
6 4 0x180000000 0xc2c88a 0xc3c889 1048576 1
7 1 0x1c0000000 0x77f9ba 0x78f9b9 1048576 1
8 2 0x200000000 0x80000 0x8ffff 1048576 1
StorNext File System Tuning Guide 67

Chapter 2: Allocation Session Reservation (ASR)
How ASR Works
9 3 0x240000000 0xbe4028 0xbf4027 1048576 1

Finally, consider two concurrent writers in the same directory on the
same client writing 10 GB files. The files will checker board until they
reach 100 MBs. After that, each file will have its own large session and
the checker boarding will cease.

Here is an example of two 5 GB files written in the same directory at the
same time with 2MB I/Os. The output is from the snfsdefrag -e
<file> command.

One:
group frbase fsbase fsend kbytes depth
0 1 0x0 0x18d140 0x18d23f 4096 1
1 1 0x400000 0x18d2c0 0x18d33f 2048 1
2 1 0x600000 0x18d3c0 0x18d43f 2048 1
3 1 0x800000 0x18d4c0 0x18d53f 2048 1
4 1 0xa00000 0x18d5c0 0x18d73f 6144 1
5 1 0x1000000 0x18d7c0 0x18d83f 2048 1
6 1 0x1200000 0x18d8c0 0x18d9bf 4096 1
7 1 0x1600000 0x18dbc0 0x18dcbf 4096 1
8 1 0x1a00000 0x18dfc0 0x18e4bf 20480 1
9 1 0x2e00000 0x18e8c0 0x18e9bf 4096 1
10 1 0x3200000 0x18eac0 0x18ebbf 4096 1
11 1 0x3600000 0x18ecc0 0x18f3bf 28672 1
12 1 0x5200000 0x18f9c0 0x18fdbf 16384 1
13 1 0x6200000 0x1901c0 0x19849f 536064 1
14 3 0x26d80000 0x1414028 0x1424027 1048576 1
15 4 0x66d80000 0x150f092 0x151f091 1048576 1
16 1 0xa6d80000 0x10dc6e 0x11dc6d 1048576 1
17 3 0xe6d80000 0x1334028 0x1344027 1048576 1
18 4 0x126d80000 0x8f74fe 0x8fd99d 412160 1

Two:
group frbase fsbase fsend kbytes depth
0 1 0x0 0x18d0c0 0x18d13f 2048 1
1 1 0x200000 0x18d240 0x18d2bf 2048 1
2 1 0x400000 0x18d340 0x18d3bf 2048 1
3 1 0x600000 0x18d440 0x18d4bf 2048 1
4 1 0x800000 0x18d540 0x18d5bf 2048 1
5 1 0xa00000 0x18d740 0x18d7bf 2048 1
6 1 0xc00000 0x18d840 0x18d8bf 2048 1
7 1 0xe00000 0x18d9c0 0x18dbbf 8192 1
68 StorNext File System Tuning Guide

Chapter 2: Allocation Session Reservation (ASR)
How ASR Works
8 1 0x1600000 0x18dcc0 0x18dfbf 12288 1
9 1 0x2200000 0x18e4c0 0x18e8bf 16384 1
10 1 0x3200000 0x18e9c0 0x18eabf 4096 1
11 1 0x3600000 0x18ebc0 0x18ecbf 4096 1
12 1 0x3a00000 0x18f3c0 0x18f9bf 24576 1
13 1 0x5200000 0x18fdc0 0x1901bf 16384 1
14 4 0x6200000 0x1530772 0x1540771 1048576 1
15 3 0x46200000 0x1354028 0x1364027 1048576 1
16 1 0x86200000 0x12e726 0x13e725 1048576 1
17 4 0xc6200000 0x14ed9b2 0x14fd9b1 1048576 1
18 3 0x106200000 0x1304028 0x13127a7 948224 1

Without ASR and with concurrent writers of big files, each file typically
starts on its own stripe group. The checker boarding doesn't occur until
there are more writers than the number of data stripe groups. However,
once the checker boarding starts, it will exist all the way through the
file. For example, if we have two data stripe groups and four writers, all
four files would checker board until the number of writers is reduced
back to two or less.
StorNext File System Tuning Guide 69

Chapter 2: Allocation Session Reservation (ASR)
How ASR Works
70 StorNext File System Tuning Guide

Appendix A
StorNext File System Stripe

Group Affinity

This appendix describes the behavior of the stripe group affinity feature
in the StorNext file system, and it discusses some common use cases.

Note: This section does not discuss file systems managed by StorNext
Storage Manager. There are additional restrictions on using
affinities for these managed file systems.

Definitions

Following are definitions for terms used in this appendix:

Stripe Group A stripe group is collection of LUNs (typically disks or arrays,) across
which data is striped. Each stripe group also has a number of associated
attributes, including affinity and exclusivity.

Affinity An affinity is used to steer the allocation of a file’s data onto a set of
stripe groups. Affinities are referenced by their name, which may be up
to eight characters long. An affinity may be assigned to a set of stripe
StorNext File System Tuning Guide 71

Appendix A: StorNext File System Stripe Group Affinity
Setting Affinities
groups, representing a named pool of space, and to a file or directory,
representing the space from which space should be allocated for that
file (or files created within the directory).

Exclusivity A stripe group which has both an affinity and the exclusive attribute can
have its space allocated only by files with that affinity. Files without a
matching affinity cannot allocate space from an exclusive stripe group.

Setting Affinities

Affinities for stripe groups are defined in the file system configuration
file. They can be created through the StorNext GUI or by adding one or
more Affinity lines to a StripeGroup section in the configuration
file. A stripe group may have multiple affinities, and an affinity may be
assigned to multiple stripe groups.

Affinities for files are defined in the following ways:

• Using the cvmkfile command with the ‘-k’ option

• Using the snfsdefrag command with the ‘-k’ option

• Using the cvaffinity command with the ‘-s’ option

• Through inheritance from the directory in which they are created

Through the CvApi_SetAffinity() function, which sets affinities
programmatically

Allocation Strategy

StorNext has multiple allocation strategies which can be set at the file
system level. These strategies control where a new file’s first blocks will
be allocated. Affinities modify this behavior in two ways:
72 StorNext File System Tuning Guide

Appendix A: StorNext File System Stripe Group Affinity
Common Use Cases
• A file with an affinity is allocated only on a stripe group with
matching affinity.

• A stripe group with an affinity and the exclusive attribute is used
only for allocations by files with matching affinity.

Once a file has been created, StorNext attempts to keep all of its data on
the same stripe group. If there is no more space on that stripe group,
data may be allocated from another stripe group.

If the file has an affinity, only stripe groups with that affinity are
considered. If all stripe groups with that affinity are full, new space may
not be allocated for the file, even if other stripe groups are available.

When a file system with two affinities is to be managed by the Storage
Manager, the GUI forces those affinities to be named tier1 and tier2.
This will cause an issue if a site has an existing unmanaged file system
with two affinities with different names and wants to change that file
system to be managed. There is a process for converting a file system so
it can be managed but it is non-trivial and time consuming. Please
contact Quantum Support if this is desired.

Note: The restriction is in the StorNext GUI because of a current
system limitation where affinity names must match between
one managed file system and another. If a site was upgraded
from a pre-4.0 version to post-4.0, the affinity names get
passed along during the upgrade. For example, if prior to
StorNext 4.0 the affinity names were aff1 and aff2, the GUI
would restrict any new file systems to have those affinity
names as opposed to tier1 and tier2.

Common Use Cases

Here are some sample use cases in which affinities are used to maximize
efficiency and operation.
StorNext File System Tuning Guide 73

Appendix A: StorNext File System Stripe Group Affinity
Common Use Cases
Using Affinities on the
HaShared File

Note: StorNext File Systems prior to version 4.3, which are configured
to utilize affinities on the HaShared file system, will need to
reapply affinities to directories in the HaShared file system after
the upgrade to version 4.3 completes.

In some instances customers have seen improved performance of the
HaShared file system by separating I/O to database and metadump
directories through the use of multiple stripe groups and SNFS stripe
group affinities. The specific improvements are dependent on the
overall system utilization characteristics.

The following section describes options for configuring affinities in the
HaShared file system.

Note: Configuring an HaShared file system with multiple stripe
groups, but no affinities will still have the advantages of
distributing file I/O across each of the underlying disks. For
many this simplified approach may be preferable.

Key Metadata File Locations

/usr/adic/HAM/shared/database/metadumps

/usr/adic/HAM/shared/TSM/internal/mapping_dir

Key Database File Locations

/usr/adic/HAM/shared/mysql/db

/usr/adic/HAM/shared/mysql/journal

/usr/adic/HAM/shared/mysql/tmp

For configurations utilizing two data stripe groups in the HaShared file
system, key database files should be assigned to one affinity and key
metadata files should be assigned the other affinity. If more than two
stripe groups are configured in the HaShared file system, the individual
MySQL directories can be broken out into their own stripe groups with
the appropriate affinity set.
74 StorNext File System Tuning Guide

Appendix A: StorNext File System Stripe Group Affinity
Common Use Cases
WARNING: Ensure that each stripe group is provisioned appropriately
to handle the desired file type. See the snPreInstall
script for sizing calculations. Failure to provision stripe
groups appropriately could result in unexpected no-space
errors.

1 Configure HaShared file system to use multiple data stripe groups.

a If this is the initial configuration of the HaShared file system, it is
recommended that an exclusive metadata & journal stripe
group be created along with each of the data stripe groups.
Each affinity should be assigned to the desired data stripe
group prior to creating the file system.

b If the HaShared file system already exists, any additional stripe
groups should be added and the desired affinities should be
added to the data stripe groups. If the MDC pair has already
been converted to HA, then the MDCs must be put into Config
Mode before making configuration changes to the HaShared
file system.

The number of data stripe groups should be equal to, or greater
than the number of affinities desired. Do not configure any of the
data affinities as exclusive.

2 If the MDC pair has not yet been converted to HA, do so at this
point.

a After the HA conversion completes, put the MDC pair into
Config Mode.

3 Stop Storage Manager.

4 Assign the desired affinity to each of the directories and move data
to the appropriate stripe group using the following commands:

find <directory> -exec cvaffinity –s <affinity key> {} \;

snfsdefrag –m 0 –k <affinity key> -K <affinity key> -r
<directory>

5 Start Storage Manager.

6 Exit Config Mode.
StorNext File System Tuning Guide 75

Appendix A: StorNext File System Stripe Group Affinity
Common Use Cases
Note: Any active restore journal files will not be migrated at the
time these steps are run, as open files will not be relocated.
Once the next StorNext backup runs, subsequent restore
journal files will be allocated on the desired stripe group.

Segregating Audio and
Video Files Onto Their
Own Stripe Groups

To segregate audio and video files onto their own stripe groups:

One common use case is to segregate audio and video files onto their
own stripe groups. Here are the steps involved in this scenario:

• Create one or more stripe groups with an AUDIO affinity and the
exclusive attribute.

• Create one or more stripe groups with a VIDEO affinity and the
exclusive attribute.

• Create one or more stripe groups with no affinity (for non-audio,
non-video files).

• Create a directory for audio using ‘cvmkdir -k AUDIO audio’.

• Create a directory for video using ‘cvmkdir -k VIDEO video’.

Files created within the audio directory will reside only on the AUDIO
stripe group. (If this stripe group fills, no more audio files can be
created.)

Files created within the video directory will reside only on the VIDEO
stripe group. (If this stripe group fills, no more video files can be
created.)

Reserving High-Speed
Disk For Critical Files

In this use case, high-speed disk usage is reserved for and limited to only
critical files. Here are the steps for this scenario:

• Create a stripe group with a FAST affinity and the exclusive
attribute.

• Label the critical files or directories with the FAST affinity.

The disadvantage here is that the critical files are restricted to using only
the fast disk. If the fast disk fills up, the files will not have space
allocated on slow disks.
76 StorNext File System Tuning Guide

Appendix A: StorNext File System Stripe Group Affinity
Common Use Cases
To work around this limitation, you could reserve high-speed disk for
critical files but also allow them to grow onto slow disks. Here are the
steps for this scenario:

• Create a stripe group with a FAST affinity and the exclusive
attribute.

• Create all of the critical files, pre allocating at least one block of
space, with the FAST affinity. (Or move them using snfsdefrag
after ensuring the files are not empty.)

• Remove the FAST affinity from the critical files.

Because files allocate from their existing stripe group even if they no
longer have a matching affinity, the critical files will continue to grow
on the FAST stripe group. Once this stripe group is full, they can allocate
space from other stripe groups since they do not have an affinity.

This scenario will not work if new critical files can be created later,
unless there is a process to move them to the FAST stripe group, or an
affinity is set on the critical files by inheritance but removed after their
first allocation (to allow them to grow onto non-FAST groups).
StorNext File System Tuning Guide 77

Appendix A: StorNext File System Stripe Group Affinity
Common Use Cases
78 StorNext File System Tuning Guide

Appendix B
Best Practice

Recommendations

This appendix contains some best practice recommendations for various
StorNext features which you can implement to ensure optimal
performance and efficiency.

HA File System Best Practices

Note: The tuning recommendations for user file systems are not all
applicable to the StorNext HA file system. This is due to the
specific requirements of the HA file system. This file system is
not intended for streaming I/O workloads. In addition, the HA
file system utilizes a small metadata working set, relative to
most user file systems.

• RAID-1 and RAID-10 are recommended to maximize data safety and
data IOPS performance.

• One or more hot spares are recommended for data protection.

• Minimum of two dedicated physical disk drives are
recommended. Additional disks are beneficial to increase IOPS
performance. For instance, the M660 utilizes up to six RAID-1
StorNext File System Tuning Guide 79

Appendix B: Best Practice Recommendations
Replication Best Practices
pairs (for example, twelve dedicated HDD) and up to four
shared hot spares for the HA file system.

• Presenting unique metadata Stripe Group for the HA file system is
recommended.

• Utilizing the same RAID set for metadata and data Stripe Groups is
acceptable as long as multiple dedicated disk drives are provisioned
to the RAID set.

• Sharing a RAID set with other file systems is not supported

• Quantum testing utilizes 16KB FS Block size and 4MB Stripe Breadth
settings.

• Due to the transactional nature of the HA file system I/O profile,
striping is not found to provide benefit. A stripe breadth that is
too small may be detrimental to performance.

• Quantum testing utilizes RAID read-ahead capabilities.

• Although read-ahead is not expected to benefit database
performance it can be advantageous for sequential I/O
operations, such backups.

For instructions on sizing the HA file system, see the StorNext
Installation Guide available online at: http://www.quantum.com/sndocs

Replication Best Practices

This section describes some best practices related to using the StorNext
replication feature.

Replication Copies The replication target can keep one or more copies of data. Each copy is
presented as a complete directory tree for the policy. The number of
copies and placement of this directory are ultimately controlled by the
replication target. However, if the target does not implement policy
here, the source system may request how many copies are kept and
how the directories are named.

When multiple copies are kept, the older copies and current copy share
files where there are no changes. This shows up as extra hard links to
80 StorNext File System Tuning Guide

http://www.quantum.com/sndocs

Appendix B: Best Practice Recommendations
Replication Best Practices
the files. If a file is changed on the target, it affects all copies sharing the
file. If a file is changed on the replication source, older copies on the
target are not affected.

The best means to list which replication copies exist on a file system is
running snpolicy -listrepcopies command. The rmrepcopy,
mvrepcopy and exportrepcopy options should be used to manage
the copies.

Replication and
Deduplication

Replication can be performed on deduplicated or non-deduplicated
data. Even if the source system is running deduplication, you can still
replicate non-deduplicated data to the target using the
rep_dedup=off policy parameter.

A good example of when this makes sense is replicating into a TSM
relation point which is storing to tape. If deduplicated replication is
used, the store to tape requires retrieving files from the blockpool. This
is much more likely to stall tape drives than streaming raw file content
to tape.

The tradeoff here is that all file data will be sent over the network even
if the target system has already seen it. So if the limiting resource is
network bandwidth and the data is amenable to deduplication, then
deduplication-enabled replication into TSM may perform better.

With deduplicated replication, the file contents are deduplicated prior
to replication. There is no concept of replication using deduplicated
data without deduplicating the data on the source system.

Replication data is moved via a pull model, in which the target of
replication asks the source system to send it data it does not yet have.
For non-deduplicated replication, this will be performed over the
network UNLESS the source file system is cross mounted on the target,
in which case the target will use local I/O to copy the data. The number
of files actively being replicated at the same time, and the size of the
buffer used for I/O in the non-deduplicated data case are controlled by
the replicate_threads and data_buffer_size parameters on the
target system. The default for replicate_threads is 8, and the
default for data_buffer_size is 4 Mbytes.
StorNext File System Tuning Guide 81

Appendix B: Best Practice Recommendations
Deduplication Best Practices
StorNext Gateway
Server Performance

If your configuration includes StorNext LAN Clients, Quantum strongly
recommends that the machines you use for your gateway servers should
not also be configured as metadata controllers. The exception to this
recommendation is the StorNext M660 Metadata Appliance, which is
specifically manufactured to handle this workload. Doing so may not
only cause performance degradation, but also expose the virtual IPs to
additional vulnerability. For best performance, machines used as
gateway servers should be dedicated machines.

Replication with
Multiple Physical
Network Interfaces

If you want to use replication with multiple physical network interfaces,
you must arrange for traffic on each interface to be routed
appropriately.

In cases where both the replication source and target are plugged into
the same physical Ethernet switch, you can accomplish this with VLANs.

In cases where replication is over multiple WAN links, the addresses
used on the source and target replication systems must route over the
appropriate WAN links in order for replication to use all the links.

Deduplication Best Practices

This section describes some best practices related to using the StorNext
deduplication feature.

Deduplication and File
Size

Deduplication will not be beneficial on small files, nor will it provide any
benefit on files using compression techniques on the content data (such
as mpeg format video). In general, deduplication is maximized for files
that are 64MB and larger. Deduplication performed on files below 64MB
may result in sub-optimal results.

You can filter out specific files to bypass by using the dedup_skip
policy parameter. This parameter works the same as filename expansion
in a UNIX shell.

You can also skip files according to size by using the dedup_min_size
parameter.
82 StorNext File System Tuning Guide

Appendix B: Best Practice Recommendations
Deduplication Best Practices
Deduplication and
Backups

Backup streams such as tar and NetBackup can be recognized by the
deduplication algorithm if the dedup_filter parameter on the policy
is set to true.

In this configuration the content of the backup image is interpreted to
find the content files, and these are deduplicated individually. When this
this flag is not set to true, the backup image is treated as raw data and
the backup metadata in the file will interfere with the reduction
potential of the deduplication algorithm. Recognition of a backup
stream is according to its contents, not the file name.

Deduplication and File
Inactivity

Deduplication is performed on a file after a period of inactivity after the
file is last closed, as controlled by the dedup_age policy parameter. It is
worth tuning this parameter if your workload has regular periods of
inactivity on files before they are modified again.

Note: Making the age too small can lead to the same file being
deduplicated more than once.

Deduplication and
System Resources

Running deduplication is a CPU and memory-intensive operation, and
the backing store for deduplicated data can see a lot of random I/O,
especially when retrieving truncated files.

Consequently, plan accordingly, and do not under-resource the
blockpool file system or metadata system if you are striving for optimal
performance.

Deduplication Parallel
Streams

The number of deduplication parallel streams running is controlled by
the ingest_threads parameter in /usr/cvfs/config/
snpolicyd.conf.

If you are not I/O limited and have more CPU power available, increasing
the stream count from the default value of 8 streams can improve
throughput.
StorNext File System Tuning Guide 83

Appendix B: Best Practice Recommendations
Truncation Best Practices
Truncation Best Practices

This section describes some best practices related to using the StorNext
truncation feature.

Deduplication and
Truncation

If deduplication is run without StorNext Storage Manager also storing
the file contents, then snpolicyd can manage file truncation. If
Storage Manager is also running on a directory, it becomes the engine
which removes the online copy of files.

Note: Storage Manager can retrieve deleted files from tape. With
deduplication, if the primary file is removed from a directory,
the deduplicated copy is no longer accessible. This is a
fundamental difference between the two mechanisms
(truncation and deduplication) which must be understood.

If a policy is configured not to deduplicate small files, it will
automatically not truncate them. It is also possible to set an
independent minimum size for files to truncate, and a stub length to
leave behind when a file is truncated.

Once a file is truncated by the policy daemon, the contents must be
retrieved from the deduplicated storage. This can be done by reading
the file, or via the snpolicy -retrieve command.

Note: When using the command line to run commands, the
truncation policy can potentially remove the contents again
before they are used, depending on how aggressive the policy
is. Unlike TSM, the whole file does not have to be retrieved
before I/O can proceed. The number of parallel retrieves is
governed by the event_threads parameter in /usr/cvfs/
config/snpolicyd.conf.

In the case where both deduplication and tape copies of data are being
made, TSM is the service which performs truncation.
84 StorNext File System Tuning Guide

	StorNext File System Tuning
	The Underlying Storage System
	RAID Cache Configuration
	RAID Write-Back Caching
	Kinds of Stripe Groups
	RAID Level
	Segment Size and Stripe Size
	The deviceparams File

	File Size Mix and Application I/O Characteristics
	Direct Memory Access (DMA) I/O Transfer
	Buffer Cache
	NFS / CIFS
	The NFS subtree_check Option

	Reverse Path Lookup (RPL)
	SNFS and Virus Checking
	The Metadata Network
	The Metadata Controller System
	FSM Configuration File Settings
	Stripe Groups
	Affinities
	StripeBreadth
	BufferCacheSize
	InodeCacheSize
	ThreadPoolSize
	FsBlockSize
	JournalSize

	SNFS Tools
	Mount Command Options
	SNFS External API

	Optimistic Allocation
	How Optimistic Allocation Works
	Optimistic Allocation Formula

	Special Considerations for StorNext LAN Clients
	Hardware Configuration
	Software Tuning and Configuration
	Modifying the grub.conf File
	When creating a new file system, use Stripe Breadth values of 512K or larger
	Use the maximum value (512) for transfer_buffer_size_kb in the dpservers file
	Use a larger than default value for transfer_buffer_count in the dpservers file
	Use the maximum value (2048) for tcp_window_size_kb in the dpservers file
	Set the cache buffer size to 512K in the file system mount options
	Use large values for “auto_dma” settings in the file system mount options
	Enable TCP Window Scaling (RFC1323)
	Increase the system maximum TCP Window size
	Use Jumbo Frames (aka large MTU)
	Use TCP offload features
	Tune Proxypath based on workload

	Network Configuration and Topology

	StorNext Gateway servers
	StorNext LAN Client vs. Legacy Network Attached Storage
	Performance
	Fault Tolerance
	Load Balancing
	Consistent Security Model

	Windows Memory Requirements
	Windows Performance Monitor Counters
	Cpuspeed Service Issue on Linux
	How to Set max_cstate in Linux
	Example FSM Configuration File
	Linux Example Configuration File
	Windows Example Configuration File

	Ports Used By StorNext

	Allocation Session Reservation (ASR)
	How ASR Works
	Allocation Sessions
	Video Frame Per File Formats
	Hotspots and Locality
	Without ASR
	With ASR

	Small Session Rationale
	Large File Sessions and Medium Session Reservation

	StorNext File System Stripe Group Affinity
	Definitions
	Stripe Group
	Affinity
	Exclusivity

	Setting Affinities
	Allocation Strategy
	Common Use Cases
	Using Affinities on the HaShared File
	Segregating Audio and Video Files Onto Their Own Stripe Groups
	Reserving High-Speed Disk For Critical Files

	Best Practice Recommendations
	HA File System Best Practices
	Replication Best Practices
	Replication Copies
	Replication and Deduplication
	StorNext Gateway Server Performance
	Replication with Multiple Physical Network Interfaces

	Deduplication Best Practices
	Deduplication and File Size
	Deduplication and Backups
	Deduplication and File Inactivity
	Deduplication and System Resources
	Deduplication Parallel Streams

	Truncation Best Practices
	Deduplication and Truncation

